Skip to main content
Log in

A kinetic investigation of mononuclear trans-platinum(II) complexes with mixed amine ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 28 April 2020

This article has been updated

Abstract

This study was aimed at investigating the substitution behaviour of mononuclear trans-platinum(II) complexes with mixed amine ligands. The rate of substitution of the chloride moieties from the complexes trans-Pt(NH3)(NH2C2H5)Cl2 (tPt2), trans-Pt(NH3)(NH2C3H7)Cl2 (tPt3), trans-Pt(NH3)(NH2C4H9)Cl2 (tPt4) and trans-Pt(NH3)(NH2C5H11)Cl2 (tPt5), by three nucleophiles, viz. thiourea (TU), 1-methyl-2-thiourea (MTU) and 1,3-dimethyl-2-thiourea (DMTU), was studied by stopped-flow spectrophotometry using a large excess of nucleophile. Pseudo-first-order rate constants (kobs) were measured as a function of nucleophile concentration and temperature. Reactions were first order in both [complex] and [nucleophile] and therefore second-order overall (rate = kobs[complex] where kobs = k2[nucleophile]). The kinetics are consistent with a stepwise mechanism involving rate determining substitution of the first chloride followed by a fast second substitution step, with no intermediates being detected. The reactivity of the complexes was largely dependent on the length of the alkyl chain of the alkylamine moiety of the complexes. Computational modelling using density functional theory calculations showed that an increase in chain length by a methylene unit has no direct electronic consequence on the metal centre but did, however, pose significant steric hindrance on the substitution sites due to the flexibility of the alkyl chains and thus governed the overall reaction pattern. 195Pt NMR kinetic studies established that the mixed amine ligands remain coordinated to the metal centre in the final kinetic product. This implies that mononuclear trans-platinum(II) complexes are resistant to complete substitution of ligands by the incoming thiourea nucleophiles at the reaction sites. The reactions follow an associative mechanism of substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 28 April 2020

    The article “A kinetic investigation of mononuclear trans-platinum(II) complexes with mixed amine ligands”, written by “Moses Ariyo Olusegun, Desigan Reddy and Deogratius Jaganyi”.

References

  1. Komeda S, Yoneyama H, Uemura M, Muramatsu A, Okamoto N, Konishi H, Takahashi H, Takagi A, Fukuda W, Imanaka T (2017) Inorg Chem 56:802–811

    Article  CAS  Google Scholar 

  2. Aztopal N, Karakas D, Cevatemre B, Ari F, Icsel C, Daidone MG, Ulukaya E (2017) Bioorg Med Chem 25:269–276

    Article  CAS  Google Scholar 

  3. Asman WP, Jaganyi D (2017) Int J Chem Kinet 49:545–561

    Article  CAS  Google Scholar 

  4. Wilson JJ, Lippard SJ (2013) Chem Rev 114:4470–4495

    Article  Google Scholar 

  5. Chua EY, Davey GE, Chin CF, Dröge P, Ang WH, Davey CA (2015) Nucleic Acids Res 43:5284–5296

    Article  CAS  Google Scholar 

  6. Du Z, Luo Q, Yang L, Bing T, Li X, Guo W, Wu K, Zhao Y, Xiong S, Shangguan D (2014) J Am Chem Soc 136:2948–2951

    Article  CAS  Google Scholar 

  7. Herrera JM, Mendes F, Gama S, Santos I, Navarro-Ranninger C, Cabrera S, Quiroga AG (2014) Inorg Chem 53:12627–12634

    Article  CAS  Google Scholar 

  8. Navas F, Mendes F, Santos I, Navarro-Ranninger C, Cabrera S, Quiroga AG (2017) Inorg Chem 56:6175–6183

    Article  CAS  Google Scholar 

  9. Montero EI, Díaz S, González-Vadillo AM, Pérez JM, Alonso C, Navarro-Ranninger C (1999) J Med Chem 42:42–4268

    Article  Google Scholar 

  10. Song H, Li W, Qi R, Yan L, Jing X, Zheng M, Xiao H (2015) Chem Commun 51:11493–11495

    Article  CAS  Google Scholar 

  11. Brabec V, Vrana O, Novakova O, Kasparkova J (2016) Chem Commun 52:4096–4098

    Article  CAS  Google Scholar 

  12. Hofmann A, Dahlenburg L, van Eldik R (2003) Inorg Chem 42:6528–6538

    Article  CAS  Google Scholar 

  13. Seifert E (2014) OriginPro 9.1: scientific data analysis and graphing software: software review. ACS Publications, Washington, D.C.

    Book  Google Scholar 

  14. Becke AD (1992) Journal of Chemical Physics 96:2155–2160

    Article  CAS  Google Scholar 

  15. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  16. Kinunda G, Jaganyi D (2016) Trans Met Chem 41:235–248

    Article  CAS  Google Scholar 

  17. Papo TR, Jaganyi D (2015) Trans Met Chem 40:53–60

    Article  CAS  Google Scholar 

  18. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  19. Bugarčić ZD, Nandibewoor ST, Hamza MS, Heinemann F, van Eldik R (2006) Dalton Trans 24:2984–2990

    Article  Google Scholar 

  20. Ertürk H, Puchta R, van Eldik R (2009) Eur J Inorg Chem 10:1331–1338

    Article  Google Scholar 

  21. Belluco U, Cattalini L, Basolo F, Pearson RG, Turco A (1965) JACS 87:241–246

    Article  CAS  Google Scholar 

  22. Priquele JR, Butler IS, Rochon FD (2006) Appl Spectrosc Rev 41:185–226

    Article  Google Scholar 

  23. Norman RE, Ranford JD, Sadler PJ (1992) Inorg Chem 31:877–888

    Article  CAS  Google Scholar 

  24. Ongoma PO, Jaganyi D (2014) Trans Met Chem 39:407–420

    Article  CAS  Google Scholar 

  25. Atkins P, de Paula J (2009) Elements of physical chemistry, 5th edn. Oxford University Press, Great Britain

    Google Scholar 

  26. Mambanda A, Jaganyi D, Hochreuther S, van Eldik R (2010) Dalton Trans 39:3595–3608

    Article  CAS  Google Scholar 

  27. Asman PW (2017) J Coord Chem 2:1–20

    Article  Google Scholar 

  28. Asman PW (2018) Inorg Chim Acta 469:341–352

    Article  CAS  Google Scholar 

  29. Jaganyi D, Hofmann A, van Eldik R (2001) Angew Chem Int Ed 40:1680–1683

    Article  CAS  Google Scholar 

  30. Jaganyi D, Reddy D, Gertenbach J, Hofmann A, van Eldik R (2004) Dalton Trans 2:299–304

    Article  Google Scholar 

  31. Jaganyi D, Tiba F, Munro OQ, Petrović B, Bugarčić ZD (2006) Dalton Trans 24:2943–2949

    Article  Google Scholar 

  32. Ongoma P, Jaganyi D (2012) Dalton Trans 41:10724–10730

    Article  CAS  Google Scholar 

  33. Wekesa IM, Jaganyi D (2014) Dalton Trans 43:2549–2558

    Article  CAS  Google Scholar 

  34. Hochreuther S, Nandibewoor ST, Puchta R, van Eldik R (2012) Dalton Trans 41:512–522

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the University of KwaZulu Natal. We are also grateful to Mr. Craig Grimmer for NMR analyses and Mrs. Caryl Janse van Rensburg for mass and elemental analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moses Ariyo Olusegun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised due to retrospective Open Access cancellation

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1008 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olusegun, M.A., Reddy, D. & Jaganyi, D. A kinetic investigation of mononuclear trans-platinum(II) complexes with mixed amine ligands. Transit Met Chem 45, 295–301 (2020). https://doi.org/10.1007/s11243-020-00381-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00381-0

Navigation