Skip to main content
Log in

Green Synthesis of Fe3O4 Nanoparticles and Its Application in Preparation of Fe3O4/Cellulose Magnetic Nanocomposite: A Suitable Proposal for Drug Delivery Systems

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, magnetic iron oxide nanoparticles (Fe3O4) were produced by a green method, using aqueous extract of spent-tea waste as the reducing agent, which was subsequently used to prepare the magnetic and biodegradable Fe3O4/cellulose nanocomposite. The nanostructures were compared using advanced techniques such as UV–Vis spectrophotometry, Fourier transform infrared, X-ray spectroscopy, imaging by electron microscopy, thermal analysis, and vibrating-sample magnetometery. The data from the analyses showed that the synthesized nanocomposite had a spherical shape with an average particle size of 15.5 nm, which is smaller than the mean (28 nm) of the pure Fe3O4 nanoparticles. These results also showed that the prepared nanocomposite had a higher thermal resistance (450–800 °C) compared to pure cellulose. Another important feature of the nanoscale was the magnetic property (25 emu/g), which was smaller than that obtained in pure Fe3O4 nanoparticles (45 emu/g). In addition, the swelling capacity was studied as one of the functional capabilities of the nanocomposite, which was 139.3 g/g, more than the swell capacity obtained for pure cellulose (66.8 g/g). According to the results, the prepared Fe3O4/cellulose nanocomposite is suggested to be applied in metronidazole drug delivery system regarding its suitable and acceptable properties, such as high absorption capacity, controlled magnetic transferability and biodegradability as well as non-toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Donaldson, L. Tran, L.A. Jimenez, R. Duffin, D.E. Newby, N. Mills, W. MacNee, V. Stone, Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part. Fibre Toxicol. 2(10), 1–14 (2005)

    Google Scholar 

  2. E.J. Guidelli, A.P. Ramos, M.E.D. Zaniquelli, O. Baffa, Green synthesis of colloidal silver nanoparticles using natural rubber latex extracted from Hevea brasiliensis. Spectrochim. Acta A. 82(1), 140–145 (2011)

    CAS  Google Scholar 

  3. Y. Li, T.-Y. Wu, S.-M. Chen, M.A. Ali, F.M.A. AlHemaid, Green synthesis and electrochemical characterizations of gold nanoparticles using leaf extract of Magnolia kobus. Int. J. Electrochem. Sci. 7(12), 12742–12751 (2012)

    CAS  Google Scholar 

  4. V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145(1–2), 83–96 (2009)

    CAS  PubMed  Google Scholar 

  5. T. Varadavenkatesan, R. Vinayagam, R. Selvaraj, Structural characterization of silver nanoparticles phyto-mediated by a plant waste, seed hull of Vigna mungo and their biological applications. J. Mol. Struct. 1147(5), 629–635 (2017)

    CAS  Google Scholar 

  6. S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13(10), 2638–2650 (2011)

    CAS  Google Scholar 

  7. V.V. Makarov, A.J. Love, O.V. Sinitsyna, S.S. Makarova, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, Green nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6(1), 35–44 (2014)

    CAS  Google Scholar 

  8. N. Kumar, S. Kumbhat, Essentials in nanoscience and nanotechnology (Wiley, Hoboken, 2016)

    Google Scholar 

  9. F.M. Kievit, M. Zhang, Surface engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res. 44(10), 853–862 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. J. Nam, N. Won, J. Bang, H. Jin, J. Park, S. Jung, S. Jung, Y. Park, S. Kim, Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliv. Rev. 65(5), 622–648 (2013)

    CAS  PubMed  Google Scholar 

  11. S. Ahmed, M. Ahmad, B.L. Swami, S. Ikram, A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J. Adv. Res. 7(1), 17–28 (2016)

    CAS  PubMed  Google Scholar 

  12. S. Ahmed, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: a prospect towards green chemistry. J. Photochem. Photobiol. B 166, 272–284 (2017)

    CAS  PubMed  Google Scholar 

  13. S. Senapati, Biosynthesis and immobilization of nanopaticles and their applications, Ph.D. thesis, University of Pune, Mumbai, (2005)

  14. I. Hussain, N.B. Singh, A. Singh, H. Singh, S.C. Singh, Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38(4), 545–560 (2016)

    CAS  PubMed  Google Scholar 

  15. S. Baker, B.P. Harini, D. Rakshith, S. Satish, Marine microbes: invisible nanofactories. J. Pharm. Res. 6(3), 383–388 (2013)

    CAS  Google Scholar 

  16. K. Parveen, V. Banse, L. Ledwani, Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf. Proc. 1724(1), 020048 (2016)

    Google Scholar 

  17. M. Shah, D. Fawcett, S. Sharma, S. Tripathy, G. Poinern, Green synthesis of metallic nanoparticles via biological entities. Materials 8(11), 7278–7308 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. D. Ledwith, A. Whelan, J. Kelly, A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J. Mate. Chem. 17(23), 2459–2464 (2007)

    CAS  Google Scholar 

  19. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem. Mater. 17(3), 566–572 (2005)

    CAS  Google Scholar 

  20. M. Sorbiun, E. Shayegan Mehr, A. Ramazani, A. Mashhadi Malekzadeh, Biosynthesis of metallic nanoparticles using plant extracts and evaluation of their antibacterial properties. Nanochem. Res. 3(1), 1–16 (2018)

    CAS  Google Scholar 

  21. A. Bahadur, S. Iqbal, A. Saeed, M.I. Bashir, M. Shoaib, M. Waqas, G. Shabir, A. Jabbar, Green synthesis of ultrafine super-paramagnetic magnetite nano-fluid: a magnetic and dielectric study. Chem. Pap. 71(8), 1445–1451 (2017)

    CAS  Google Scholar 

  22. Y. Cai, Y. Shen, A. Xie, S. Li, X. Wang, A Green synthesis of soya bean sprouts- mediated superparamagnetic Fe3O4 nanoparticles. J. Magn. Magn. Mater. 322(19), 2938–2943 (2010)

    CAS  Google Scholar 

  23. N. Latha, M. Gowri, Green synthesis of Cr2O3 nanoparticles using Tridax procumbens leaf extract and its antibacterial. Synthesis 3(47), 1551–1556 (2014)

    Google Scholar 

  24. V.V. Makarov, S.S. Makarova, A.J. Love, O.V. Sinitsyna, A.O. Dudnik, I.V. Yaminsky, M.E. Taliansky, N.O. Kalinina, Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare, and Rumex acetosa Plants. Langmuir 30(20), 5982–5988 (2014)

    CAS  PubMed  Google Scholar 

  25. S. Venkateswarlu, B.N. Kumar, B. Prathima, K. Anitha, N.V.V. Jyothi, A novel green synthesis of Fe3O4–Ag core shell recyclable nanoparticles using Vitis vinifera stem extract and its enhanced antibacterial performance. Phys B 457, 30–35 (2015)

    CAS  Google Scholar 

  26. C. Prasad, S. Gangadhara, P. Venkateswarlu, Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity. Appl. Nanosci. 6(6), 797–802 (2015)

    Google Scholar 

  27. V. Niraimathee, V. Subha, R.E. Ravindran, S. Renganathan, Green synthesis of iron oxide nanoparticles from Mimosa pudica root extract. Int. J. Environ. Sustain. Develop. 15(3), 227–240 (2016)

    Google Scholar 

  28. R. López-García, J.L. Herrero, M.E. Barriada, S. de Vicente, Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chem. Eng. J. 301, 83–91 (2016)

    Google Scholar 

  29. W.H. Li, N. Yang, Green and facile synthesis of Ag–Fe3O4 nanocomposites using the aqueous extract of Crataegus pinnatifida leaves and their antibacterial performance. Mater. Lett. 162, 157–160 (2016)

    CAS  Google Scholar 

  30. R.R. Koli, M.R. Phadatare, B.B. Sinha, D.M. Sakate, A.V. Ghule, G.S. Ghodake, N.G. Deshpande, V.J. Fulari, Gram bean extract-mediated synthesis of Fe3O4 nanoparticles for tuning the magneto-structural properties that influence the hyperthermia performance. J. Taiwan. Inst. Chem. 95, 357–365 (2019)

    CAS  Google Scholar 

  31. R. Rahmani, M. Gharanfoli, M. Gholamin, M. Darroudi, J. Chamani, K. Sadri, Green synthesis of 99mTc-labeled-Fe3O4 nanoparticles using Quince seeds extract and evaluation of their cytotoxicity and biodistribution in rats. J. Mol. Struct. 1196, 394–402 (2019)

    CAS  Google Scholar 

  32. Á. Ruíz-Baltazar, S. Reyes-López, M. Mondragón-Sánchez, A. Robles-Cortés, R. Pérez, Eco-friendly synthesis of Fe3O4 nanoparticles: evaluation of their catalytic activity in methylene blue degradation by kinetic adsorption models. Results Phys. 12, 989–995 (2019)

    Google Scholar 

  33. K.D. Sirdeshpande, A. Sridhar, K.M. Cholkar, R. Selvaraj, Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of Calliandra haematocephala and their photocatalytic degradation of malachite green dye. Appl. Nanosci. 8(4), 675–683 (2018)

    CAS  Google Scholar 

  34. Z. Izadiyan, K. Shameli, M. Miyake, H. Hara, S. Eva, B. Mohamad, K. Kalantar, S. Husna, M. Taib, E. Rasouli, Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arab. J. Chem. 13, 2011–2023 (2018)

    Google Scholar 

  35. G. Xia, K.O. Reddy, C.U. Maheswari, J. Jayaramudu, J. Zhang, J. Zhang, V. Rajulu, Preparation and properties of biodegradable spent tea leaf powder/poly (propylene carbonate) composite films. Int. J. Polym. Anal. Charact. 20(4), 377–387 (2015)

    CAS  Google Scholar 

  36. D. Lin, B. Pan, L. Zhu, B. Xing, Characterization and phenanthrene sorption of tea leaf powdersJ. Agric. Food Chem. 55(14), 5718–5724 (2007)

    CAS  Google Scholar 

  37. S. Wan, Z. Ma, Y. Xue, M. Ma, S. Xu, L. Qian, Q. Zhang, Sorption of lead(II), cadmium(II), and copper(II) ions from aqueous solutions using tea waste. Ind. Eng. Chem. Res. 53(9), 3629–3635 (2014)

    CAS  Google Scholar 

  38. A. Rostami-Vartooni, A. Moradi-Saadatmand, M. Bagherzadeh, M. Mahdavi, Green synthesis of Ag/Fe3O4/ZrO2 nanocomposite using aqueous Centaurea cyanus flower extract and its catalytic application for reduction of organic pollutants Iran. J. Catal. 9(1), 27–35 (2019)

    CAS  Google Scholar 

  39. R. Heydari, M. Foroutan Koudehi, S.M. Pourmortazavi, Antibacterial activity of Fe3O4/Cu nanocomposite: Green synthesis using Carum carvi L seeds aqueous extrac. Chem. Select. 4(2), 531–535 (2019)

    CAS  Google Scholar 

  40. S.H. Adyani, E. Soleimani, Green synthesis of Ag/Fe3O4/RGO nanocomposites by Punica granatum peel extract: Catalytic activity for reduction of organic pollutants. Int. J. Hydrog. Energy 44(5), 2711–2730 (2019)

    CAS  Google Scholar 

  41. M.K. Satheeshkumar, E. Ranjith Kumar, Ch Srinivas, N. Suriyanarayanan, M. Deepty, C.L. Prajapat, T.V. Chandrasekhar Rao, D.L. Sastry, Study of structural, morphological and magnetic properties Ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antibacterial activity. J. Magn. Magn. Mater. 469, 691–697 (2019)

    CAS  Google Scholar 

  42. S. Mallakpour, M. Hatami, An effective, low-cost and recyclable bio-adsorbent having amino acid intercalated LDH@Fe3O4/PVA magnetic nanocomposites for removal of methyl orange from aqueous solution. App. Clay Sci. 174, 127–137 (2019)

    CAS  Google Scholar 

  43. Y. Jiao, C. Wan, W. Bao, H. Gao, D. Liang, J. Li, Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B. Carbohydr. Polym 189, 371–378 (2018)

    CAS  PubMed  Google Scholar 

  44. Q. Lu, Y. Zhang, H. Hu, W. Wang, Z. Huang, D. Chen, M. Yang, J. Liang, In situ synthesis of a stable Fe3O4@Cellulose nanocomposite for efficient catalytic degradation of methylene blue. Nanomaterials 9(2), 275 (2019)

    CAS  PubMed Central  Google Scholar 

  45. L.E. Low, B.T. Tey, B.H. Ong, S.Y. Tang, A facile and rapid sonochemical synthesis of monodispersed Fe3O4@cellulose nanocrystal nanocomposites without inert gas protection. Asia-Pac. J. Chem. Eng 13(4), e2209 (2018)

    Google Scholar 

  46. D. Shen, J. Liu, L. Gan, N. Huang, M. Long, Green synthesis of Fe3O4/cellulose/polyvinyl alcohol hybride aerogel and its application for dye removal. J. Polym. Environ. 26(6), 2234–2242 (2018)

    CAS  Google Scholar 

  47. V. Sadanand, N. Rajini, B. Satyanarayana, A. VaradaRajulu, Polymer/metal nanocomposites by in situ and ex situ generation. Int. J. Polym. Anal. Charact. 21, 408–416 (2016)

    CAS  Google Scholar 

  48. J. Duan, K. Obi Reddy, A.V. Rajulu, Effects of spent tea leaf powder on the properties and functions of cellulose green composite films. J. Environ. Chem. Eng. 4(1), 440–448 (2016)

    CAS  Google Scholar 

  49. M.M. Khodaei, A. Alizadeh, M. Haghipour, Cellulose/Fe3O4/Co3O4 nanocomposite as a highly efficient and reusable catalyst for the synthesis of 1-((Benzo[d]thiazol-2-ylamino)(aryl)-methyl) naphthalen-2-ol Derivatives. Org. Chem. Res. 4(2), 159–173 (2018)

    Google Scholar 

  50. M. Yadav, Study on thermal and mechanical properties of cellulose/iron oxide bionanocomposites film. Compos. Commun. 10, 1–5 (2018)

    Google Scholar 

  51. L.E. Low, B.T. Tey, B.H. Ong, Unravelling pH-responsive behaviour of Fe3O4@ CNCs-stabilized pickering emulsions under the influence of magnetic field. Carbohydr. Polym 155, 391–399 (2017)

    CAS  PubMed  Google Scholar 

  52. H.Y. Zhu, Y.Q. Fu, R. Jiang, J.H. Jiang, L. Xiao, G.M. Zeng, S.L. Zhao, Y. Wang, Adsorption removal of congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 173(2), 494–502 (2011)

    CAS  Google Scholar 

  53. M. Yadollahi, S. Farhoudian, S. Barkhordari, I. Gholamali, H. Farhadnejad, H. Motasadizade, Facile synthesis of chitosan/ZnO bio-nanocomposite hydrogel beads as drug delivery systems. Int. J. Biol. Macromol. 82, 273–278 (2016)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our real debt of gratitude goes to Arak University for financial support of this work (Grant No. 98/109 dated 22/7/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Azizi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, A. Green Synthesis of Fe3O4 Nanoparticles and Its Application in Preparation of Fe3O4/Cellulose Magnetic Nanocomposite: A Suitable Proposal for Drug Delivery Systems. J Inorg Organomet Polym 30, 3552–3561 (2020). https://doi.org/10.1007/s10904-020-01500-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01500-1

Keywords

Navigation