Skip to main content

Advertisement

Log in

Dengue NS1 detection in pediatric serum using microfluidic paper-based analytical devices

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The diagnosis of dengue infection is still a critical factor determining success in the clinical management and treatment of patients. Here, the development of microfluidic paper-based analytical devices (μPADs) utilizing a sandwich immunoassay on wax patterned paper functionalized with anti-dengue NS1 monoclonal antibodies for point-of-care detection of dengue NS1 (DEN-NS1-PAD) is reported. Various assay conditions, including the length of the channel and diluent, were optimized, and the response detected by the naked eye and digitized images within 20–30 min. The DEN-NS1-PAD was successfully tested in the field for detecting dengue NS1 in buffer, cell culture media, and human serum. The limit of detection (LoD) of the DEN-NS1-PAD obtained with the naked eye, scanner, and a smartphone camera was 200, 46.7, and 74.8 ng mL−1, respectively. The repeatability, reproducibility, and stability of the DEN-NS1-PAD were also evaluated. High true specificity and sensitivity in the serum of pediatric patients were observed. These evaluation results confirm that the DEN-NS1-PAD can potentially be used in point-of-care dengue diagnostics, which can significantly impact on the spreading of mosquito-borne diseases, which are likely to become more prevalent with the effects of global warming.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.

Similar content being viewed by others

References

  1. Choi JR, Tang R, Wang S, Wan Abas WA, Pingguan-Murphy B, Xu F. Paper-based sample-to-answer molecular diagnostic platform for point-of-care diagnostics. Biosens Bioelectron. 2015;74:427–39. https://doi.org/10.1016/j.bios.2015.06.065.

    Article  PubMed  CAS  Google Scholar 

  2. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden of dengue: an analysis from the global burden of disease study 2013. Lancet Infect Dis. 2016;16(6):712–23. https://doi.org/10.1016/S1473-3099(16)00026-8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thomas SJ, Nisalak A, Anderson KB, Libraty DH, Kalayanarooj S, Vaughn DW, et al. Dengue plaque reduction neutralization test (PRNT) in primary and secondary dengue virus infections: how alterations in assay conditions impact performance. Am J Trop Med Hyg. 2009;81(5):825–33. https://doi.org/10.4269/ajtmh.2009.08-0625.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Salje H, Rodriguez-Barraquer I, Rainwater-Lovett K, Nisalak A, Thaisomboonsuk B, Thomas SJ, et al. Variability in dengue titer estimates from plaque reduction neutralization tests poses a challenge to epidemiological studies and vaccine development. PLoS Negl Trop Dis. 2014;8(6):e2952. https://doi.org/10.1371/journal.pntd.0002952.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dengue: Guidelines for diagnosis, treatment, prevention and control. New Edition ed: World Health Organization (WHO) and the Special Programme for Research and Tropical Diseases (TDR); 2009.

  6. Guzman MG, Halstead SB, Artsob H, Buchy P, Farrar J, Gubler DJ, et al. Dengue: a continuing global threat. Nat Rev Microbiol. 2010;8(12):S7–16. https://doi.org/10.1038/nrmicro2460.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Santiago GA, Vazquez J, Courtney S, Matias KY, Andersen LE, Colon C, et al. Performance of the trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat Commun. 2018;9(1):1391. https://doi.org/10.1038/s41467-018-03772-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lanciotti RS, Calisher CH, Gubler DJ, Chang GJ, Vorndam AV. Rapid detection and typing of dengue viruses from clinical-samples by using reverse transcriptase-polymerase chain-reaction. J Clin Microbiol. 1992;30(3):545–51.

    Article  CAS  Google Scholar 

  9. Pal S, Dauner AL, Mitra I, Forshey BM, Garcia P, Morrison AC, Halsey ES, Kochel TJ, Wu SJL. Evaluation of dengue NS1 antigen rapid tests and ELISA kits using clinical samples. PLoS One. 2014;9(11). https://doi.org/10.1371/journal.pone.0113411.

  10. Lai YL, Chung YK, Tan HC, Yap HF, Yap G, Ooi EE, et al. Cost-effective real-time reverse transcriptase PCR (RT-PCR) to screen for dengue virus followed by rapid single-tube multiplex RT-PCR for serotyping of the virus. J Clin Microbiol. 2007;45(3):935–41. https://doi.org/10.1128/JCM.01258-06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Shu PY, Chen LK, Chang SF, Yueh YY, Chow L, Chien LJ, et al. Comparison of capture immunoglobulin M (IgM) and IgG enzyme-linked immunosorbent assay (ELISA) and nonstructural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections. Clin Diagn Lab Immun. 2003;10(4):622–30. https://doi.org/10.1128/Cdli.10.4.622-630.2003.

    Article  CAS  Google Scholar 

  12. Point-of-Care Diagnostics Market. In: Point-of-care diagnostics market by testing (glucose, lipids, HbA1c, HCV, HIV, influenza, urinalysis, hematology, cancer, pregnancy, PT/INR), platform (lateral flow, immunoassay), mode (prescription, OTC), end-user - global forecast to 2022 MarketsandMarkets Research Private Ltd. https://www.marketsandmarkets.com/Market-Reports/point-of-care-diagnostic-market-106829185.html. Accessed 30 October 2019.

  13. Kumar S, Bhushan P, Krishna V, Bhattacharya S. Tapered lateral flow immunoassay based point-of-care diagnostic device for ultrasensitive colorimetric detection of dengue NS1. Biomicrofluidics. 2018;12(3). https://doi.org/10.1063/1.5035113.

  14. Sinawang PD, Rai V, Ionescu RE, Marks RS. Electrochemical lateral flow immunosensor for detection and quantification of dengue NS1 protein. Biosens Bioelectron. 2016;77:400–8. https://doi.org/10.1016/j.bios.2015.09.048.

    Article  PubMed  CAS  Google Scholar 

  15. Wang RS, Ongagna-Yhombi SY, Lu ZD, Centeno-Tablante E, Colt S, Cao XK, et al. Rapid diagnostic platform for colorimetric differential detection of dengue and chikungunya viral infections. Anal Chem. 2019;91(8):5415–23. https://doi.org/10.1021/acs.analchem.9b00704.

    Article  PubMed  CAS  Google Scholar 

  16. Yen CW, de Puig H, Tam JO, Gomez-Marquez J, Bosch I, Hamad-Schifferli K, et al. Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip. 2015;15(7):1638–41. https://doi.org/10.1039/c5lc00055f.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Deraney RN, Mace CR, Rolland JP, Schonhorn JE. Multiplexed, patterned-paper immunoassay for detection of malaria and dengue fever. Anal Chem. 2016;88(12):6161–5. https://doi.org/10.1021/acs.analchem.6b00854.

    Article  PubMed  CAS  Google Scholar 

  18. Hu J, Wang SQ, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014;54:585–97. https://doi.org/10.1016/j.bios.2013.10.075.

    Article  PubMed  CAS  Google Scholar 

  19. Bosch I, de Puig H, Hiley M, Carre-Camps M, Perdomo-Celis F, Narvaez CF, et al. Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum. Sci Transl Med. 2017;9(409). https://doi.org/10.1126/scitranslmed.aan1589.

  20. Posthuma-Trumpie GA, Korf J, van Amerongen A. Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem. 2009;393(2):569–82. https://doi.org/10.1007/s00216-008-2287-2.

    Article  PubMed  CAS  Google Scholar 

  21. Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue Lancet. 2019;393(10169):350–63. https://doi.org/10.1016/S0140-6736(18)32560-1.

    Article  PubMed  Google Scholar 

  22. Alcon S, Talarmin A, Debruyne M, Falconar A, Deubel V, Flamand M. Enzyme-linked immunosorbent assay specific to dengue virus type 1 nonstructural protein NS1 reveals circulation of the antigen in the blood during the experiencing primary acute phase of disease in patients or secondary infections. J Clin Microbiol. 2002;40(2):376–81. https://doi.org/10.1128/jcm.40.02.376-381.2002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Darwish NT, Alias YB, Khor SM. An introduction to dengue-disease diagnostics. Trac-Trend Anal Chem. 2015;67:45–55. https://doi.org/10.1016/j.trac.2015.01.005.

    Article  CAS  Google Scholar 

  24. Libraty DH, Young PR, Pickering D, Endy TP, Kalayanarooj S, Green S, et al. High circulating levels of the dengue virus nonstructural protein NS1 early in dengue illness correlate with the development of dengue hemorrhagic fever. J Infect Dis. 2002;186(8):1165–8. https://doi.org/10.1086/343813.

    Article  PubMed  CAS  Google Scholar 

  25. Singh MP, Majumdar M, Singh G, Goyal K, Preet K, Sarwal A, et al. NS1 antigen as an early diagnostic marker in dengue: report from India. Diagn Microbiol Infect Dis. 2010;68(1):50–4. https://doi.org/10.1016/j.diagmicrobio.2010.04.004.

    Article  PubMed  CAS  Google Scholar 

  26. Kumarasamy V, Wahab AHA, Chua SK, Hassan Z, Chem YK, Mohamad M, et al. Evaluation of a commercial dengue NS1 antigen-capture ELISA for laboratory diagnosis of acute dengue virus infection. J Virol Methods. 2007;140:75–9. https://doi.org/10.1016/j.jviromet.2006.11.001.

    Article  PubMed  CAS  Google Scholar 

  27. Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed. 2007;46(8):1318–20. https://doi.org/10.1002/anie.200603817.

    Article  CAS  Google Scholar 

  28. Martinez AW, Phillips ST, Whitesides GM. Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A. 2008;105(50):19606–11. https://doi.org/10.1073/pnas.0810903105.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip. 2008;8(12):2146–50. https://doi.org/10.1039/b811135a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bruzewicz DA, Reches M, Whitesides GM. Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem. 2008;80(9):3387–92. https://doi.org/10.1021/ac702605a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Adkins JA, Boehle K, Friend C, Chamberlain B, Bisha B, Henry CS. Colorimetric and electrochemical bacteria detection using printed paper- and transparency-based analytic devices. Anal Chem. 2017;89(6):3613–21. https://doi.org/10.1021/acs.analchem.6b05009.

    Article  PubMed  CAS  Google Scholar 

  32. Creran B, Li X, Duncan B, Kim CS, Moyano DF, Rotello VM. Detection of bacteria using inkjet-printed enzymatic test strips. ACS Appl Mater Interfaces. 2014;6(22):19525–30. https://doi.org/10.1021/am505689g.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Srisa-Art M, Boehle KE, Geiss BJ, Henry CS. Highly sensitive detection of Salmonella typhimurium using a colorimetric paper-based analytical device coupled with immunomagnetic separation. Anal Chem. 2018;90(1):1035–43. https://doi.org/10.1021/acs.analchem.7b04628.

    Article  PubMed  CAS  Google Scholar 

  34. Sun X, Li B, Tian C, Yu F, Zhou N, Zhan Y, et al. Rotational paper-based electrochemiluminescence immunodevices for sensitive and multiplexed detection of cancer biomarkers. Anal Chim Acta. 2018;1007:33–9. https://doi.org/10.1016/j.aca.2017.12.005.

    Article  PubMed  CAS  Google Scholar 

  35. Carrilho E, Martinez AW, Whitesides GM. Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem. 2009;81(16):7091–5. https://doi.org/10.1021/ac901071p.

    Article  PubMed  CAS  Google Scholar 

  36. Lu Y, Shi W, Jiang L, Qin J, Lin B. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis. 2009;30(9):1497–500. https://doi.org/10.1002/elps.200800563.

    Article  PubMed  CAS  Google Scholar 

  37. Singh KRP. Cell culture derived from larvae of Aedes albopictus (SKuse) and Aedes aegypti (L.). Curr Sci. 1967;36:506–8.

    Google Scholar 

  38. Igarashi A. Isolation of a Sing’s Aedes albopictus cell clone sensitive to dengue and chikungunya viruses. J Gen Virol. 1978;40:531–44.

    Article  CAS  Google Scholar 

  39. Sabchareon A, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S, Jiwariyavej V, et al. Dengue infection in children in Ratchaburi, Thailand: a cohort study. I. Epidemiology of symptomatic acute dengue infection in children, 2006–2009. PLoS Negl Trop Dis. 2012;6(7):e1732. https://doi.org/10.1371/journal.pntd.0001732.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Channon RB, Nguyen MP, Scorzelli AG, Henry EM, Volckens J, Dandy DS, et al. Rapid flow in multilayer microfluidic paper-based analytical devices. Lab Chip. 2018;18(5):793–802. https://doi.org/10.1039/c7lc01300k.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Cate DM, Adkins JA, Mettakoonpitak J, Henry CS. Recent developments in paper-based microfluidic devices. Anal Chem. 2015;87(1):19–41. https://doi.org/10.1021/ac503968p.

    Article  PubMed  CAS  Google Scholar 

  42. Tholen DW, Linnet K, Kodratovich M, Armbruster DA, Garrett PE, Jones RL, Kroll MH, Lequin RM, Pankratz TJ, Scassellati GA, Schimmel H, Tsai J. Protocols for determination of limits of detection and limits of quantitation; approved guideline. USA: Clinical and Laboratory Standards Institute2012 Contract No.: EP17-A.

  43. Administration FaD. Guidance for industry. Bioanalytical method validation. US: Department of Health and Human Services; 2001.

  44. Kikuti M, Cruz JS, Rodrigues MS, Tavares AS, Paploski IAD, Silva MMO, et al. Accuracy of the SD BIOLINE dengue duo for rapid point-of-care diagnosis of dengue. PLoS One. 2019;14(3):e0213301. https://doi.org/10.1371/journal.pone.0213301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gaikwad S, Sawant SS, Shastri JS. Comparison of nonstructural protein-1 antigen detection by rapid and enzyme-linked immunosorbent assay test and its correlation with polymerase chain reaction for early diagnosis of dengue. J Lab Physicians. 2017;9(3):177–81. https://doi.org/10.4103/0974-2727.208265.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Dussart P, Petit L, Labeau B, Bremand L, Leduc A, Moua D, et al. Evaluation of two new commercial tests for the diagnosis of acute dengue virus infection using NS1 antigen detection in human serum. PLoS Negl Trop Dis. 2008;2(8):e280. https://doi.org/10.1371/journal.pntd.0000280.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. DENGUE NS1 AG. SD BIOLINE https://www.alere.com/en/home/product-details/sd-bioline-dengue-ns1-ag.html. Accessed 23rd January 2019.

  48. Wang HK, Tsai CH, Chen KH, Tang CT, Leou JS, Li PC, et al. Cellulose-based diagnostic devices for diagnosing serotype-2 dengue fever in human serum. Adv Healthc Mater. 2014;3(2):187–96. https://doi.org/10.1002/adhm.201300150.

    Article  PubMed  CAS  Google Scholar 

  49. Dengue Ag rapid test CE. https://ctkbiotech.com/product/dengue-ag-rapid-test-4-0-ce/#demoTab1. Accessed 29th October 2019 2019.

  50. Wang SM, Sekaran SD. Evaluation of a commercial SD dengue virus NS1 antigen capture enzyme-linked immunosorbent assay kit for early diagnosis of dengue virus infection. J Clin Microbiol. 2010;48(8):2793–7. https://doi.org/10.1128/Jcm.02142-09.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

M.H.P. gratefully acknowledges the scholarship research fund from Universitas Islam Indonesia (UII). The authors also acknowledge the financial support provided by King Mongkut’s University of Technology Thonburi through the KMUTT 55th Anniversary Commemorative Fund.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patsamon Rijiravanich or Werasak Surareungchai.

Ethics declarations

Ethical approval

Ethical approval was obtained by the Ethics Committee of the Faculty of Tropical Medicine, Mahidol University, Thailand (MUTM 2019–030-01). We have complied with all relevant ethical regulations in carrying out this study.

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prabowo, M.H., Chatchen, S., Rijiravanich, P. et al. Dengue NS1 detection in pediatric serum using microfluidic paper-based analytical devices. Anal Bioanal Chem 412, 2915–2925 (2020). https://doi.org/10.1007/s00216-020-02527-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02527-6

Keywords

Navigation