Skip to main content
Log in

Frequency-tunable logic gates in graphene nano-waveguides

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this study, simple basic plasmonic logic gates of XOR, OR, and NOT based on graphene nano-ribbon resonators coupled to properly designed arrangements of nano-waveguides, as input and output logic ports, are demonstrated. The operation of the structures as frequency selective components is based on the propagation of edge modes in nano-waveguides and coupling to nano-ribbon resonators located in appropriate locations. The gates performance is investigated through analytic approaches and verified numerically using the finite difference time domain method. Typical extinction ratio of about 8 dB between ON and OFF logic states has been attained. According to the fantastic feature of voltage-dependent chemical potential of graphene conductivity, the characteristics of the structures can be actively manipulated. These sub-wavelength plasmonic components can be employed extensively in terahertz demanded applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Docherty, C.J., Johnston, M.B.: Terahertz properties of graphene. J. Infrared Millim. Terahertz Waves 33, 797–815 (2012)

    Google Scholar 

  2. Png, G.M., Flaconer, R.J., Abbott, D.: Tracking aggregation and fibrillation of globular proteins using terahertz and far-infrared spectroscopies. IEEE Trans. THz Sci. Technol. 6, 45–53 (2016)

    Google Scholar 

  3. Fitzgerald, A.J., Cole, B.E., Taday, P.F.: Nondestructive analysis of tablet coating thickness using terahertz pulsed imaging. J. Pharm. Sci. 94, 177–183 (2005)

    Google Scholar 

  4. Giles, D.: Terahertz spectroscopy of explosives and drugs. Mater. Today 11, 18–26 (2008)

    Google Scholar 

  5. Federici, J.F., Schulkin, B., Huang, F., Gray, D., Barat, R., Oliveira, F., Zimdars, D.: THz imaging and sensing for security applications-explosives, weapons, and drugs. Semicond. Sci. Technol. 20, 266–280 (2005)

    Google Scholar 

  6. Song, H.J., Nagatsuma, T.: Present and future of terahertz communications. IEEE Trans. THz Sci. Technol. 1, 256–263 (2011)

    Google Scholar 

  7. Al-Naib, I., Withayachumnankul, W.: Recent progress in terahertz metasurfaces. J. Infrared Millim. Terahertz Waves 38, 1067–1084 (2017)

    Google Scholar 

  8. Grigorenko, A.N., Polini, M., Novoselov, K.S.: Graphene plasmonics. Nat. Photon. 6, 749–758 (2012)

    Google Scholar 

  9. Low, T., Avouris, P.: Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8, 1086–1101 (2014)

    Google Scholar 

  10. Zhou, X., Zhang, T., Chen, L., Hong, W., Li, X.: A graphene-based hybrid plasmonic waveguide with ultra-deep subwavelength confinement. J. Lightwave Technol. 32, 4199–4203 (2014)

    Google Scholar 

  11. Wang, X., Meng, H., Liu, S., Deng, S., Jiao, T., Wei, Z., Wang, F., Tan, C., Huang, X.: Tunable graphene-based mid-infrared plasmonic multispectral and narrow band-stop filter. Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aabbf7

    Article  Google Scholar 

  12. Xiao, S., Zhu, X., Li, B.H., Mortensen, N.A.: Graphene-plasmon polaritons: from fundamental properties to potential applications. Front. Phys. 11, 117801 (2016)

    Google Scholar 

  13. Koppens, F.H.L., Chang, D.E., Abajo, F.J.G.: Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett. 11, 3370–3377 (2011)

    Google Scholar 

  14. Wu, J.: Ultra-narrow perfect graphene absorber based on critical coupling. Opt. Commun. 435, 25–29 (2019)

    Google Scholar 

  15. Du, W., Li, K., Wu, D., Jiao, K., Jiao, L., Liu, L., Xia, F., Kong, W., Dong, L., Yun, M.: Electrically controllable directional coupler based on tunable hybrid graphene nanoplasmonic waveguide. Opt. Commun. 430, 450–455 (2019)

    Google Scholar 

  16. Zhou, D., Xiao, L., Xiao, B., Guo, F., Yu, X., Ling, H., Xu, Z.: A high-performance terahertz modulator based on double-layer graphene. Opt. Commun. 427, 215–219 (2018)

    Google Scholar 

  17. Dolatabady, A., Granpayeh, N.: Plasmonic magnetic sensor based on graphene mounted on a magneto-optic grating. IEEE Trans. Magn. 54, 1–5 (2018)

    Google Scholar 

  18. Dolatabady, A., Granpayeh, N.: Tunable far-infrared plasmonically induced transparency in graphene based nano-structures. J. Opt. 20, 075001 (2018)

    Google Scholar 

  19. Zhu, B., Ren, G., Gao, Y., Wu, B., Wang, Q., Wang, C., Jian, S.: Graphene plasmons isolator based on non-reciprocal coupling. Opt. Express 23, 16071–16083 (2015)

    Google Scholar 

  20. Dolatabady, A., Granpayeh, N.: All-optical logic gates in plasmonic metal-insulator-metal nanowaveguide with slot cavity resonator. J. Nanophoton. 11, 026001 (2017)

    Google Scholar 

  21. Radisavljevic, B., Whitwick, M.B., Kis, A.: Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5, 9934–9938 (2011)

    Google Scholar 

  22. Yarahmadi, M., Moravvej-Farshi, M.K., Yousefi, L.: Subwavelength graphene-based plasmonic THz switches and logic gates. IEEE Trans. THz Sci. Technol. 5, 725–731 (2015)

    Google Scholar 

  23. Kim, W.Y., Kim, H.D., Kim, T.T., Park, H.S., Lee, K., Choi, H.J., Lee, S.H., Son, J., Park, N., Min, B.: Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations. Nat. Commun. 7, 10429 (2016)

    Google Scholar 

  24. Ooi, K.J.A., Chu, H.S., Bai, P., Ang, L.K.: Electro-optical graphene plasmonic logic gates. Opt. Lett. 39, 1629–1632 (2014)

    Google Scholar 

  25. Chen, W., Yang, L., Wang, P., Zhang, Y., Zhou, L., Yang, T., Wang, Y., Yang, J.: Electro-optical logic gates based on graphene-silicon waveguides. Opt. Commun. 372, 85–90 (2016)

    Google Scholar 

  26. Wu, X., Tian, J., Yang, R.: A type of all-optical logic gate based on graphene surface plasmon polaritons. Opt. Commun. 403, 185–192 (2017)

    Google Scholar 

  27. Dawlaty, J.M., Shivaraman, S., Chandrashekhar, M., Rana, F., Spencer, M.G.: Measurement of ultrafast carrier dynamics in epitaxial graphene polaritons. Appl. Phys. Lett. 92, 042116 (2008)

    Google Scholar 

  28. Dolatabady, A., Granpayeh, N.: Manipulation of the Faraday rotation by graphene metasurfaces. J. Magn. Magn. Mater. 469, 231–235 (2019)

    Google Scholar 

  29. Faraji, M., Moravvej-Farshi, M.K., Yousefi, L.: Tunable THz perfect absorber using graphene-based metamaterials. Opt. Commun. 355, 352–355 (2015)

    Google Scholar 

  30. Ju, L., Geng, B., Horng, J., Girit, C., Martin, M., Hao, Z., Bechtel, H.A., Liang, X., Zettl, A., Shen, Y.R., Wang, F.: Graphene plasmonics for tunable terahertz metamaterials. Nat. Nanotechnol. 6, 630–634 (2011)

    Google Scholar 

  31. Chu, H.S., Gan, C.H.: Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl. Phys. Lett. 102, 231107 (2013)

    Google Scholar 

  32. Zhuang, H., Kong, F., Li, K., Sheng, S.: Plasmonic bandpass filter based on graphene nanoribbon. Appl. Opt. 54, 2558–2564 (2015)

    Google Scholar 

  33. Li, H.L., Wang, L.L., Sun, B., Huang, Z.R., Zhai, X.: Controlling mid-infrared surface plasmon polaritons in the parallel graphene pair. Appl. Phys. Express 7, 125101 (2014)

    Google Scholar 

  34. Zhuang, H., Sheng, S., Kong, F., Li, K., Wang, Y.: A wavelength demultiplexing structure based on graphene nanoribbon. Opt. Commun. 381, 396–402 (2016)

    Google Scholar 

  35. Zhang, T., et al.: Plasmon induced absorption in a graphene based nanoribbon waveguide system and its applications in logic gate and sensor. J. Phys. D Appl. Phys. 51, 055103 (2018)

    Google Scholar 

  36. Liu, H., Ren, G., Gao, Y., Lian, Y., Qi, Y., Jian, S.: Tunable subwavelength terahertz plasmon-induced transparency in the InSb slot waveguide side-coupled with two stub resonators. Appl. Opt. 54, 3918–3924 (2015)

    Google Scholar 

  37. Zhuang, H., Kong, F., Li, K., Sheng, S.: Graphene-based electromagnetically induced transparency with coupling Fabry–Perot resonators. Appl. Opt. 54, 7455–7460 (2015)

    Google Scholar 

  38. Luo, X., Qiu, T., Lu, W., Ni, Z.: Plasmons in graphene: recent progress and applications. Mater. Sci. Eng. R 74, 351–376 (2013)

    Google Scholar 

  39. Zhu, X., Yan, W., Mortensen, N.A., Xiao, S.: Bends and splitters in graphene nanoribbon waveguides. Opt. Express 21, 3486–3491 (2013)

    Google Scholar 

  40. Lu, H., Liu, X., Mao, D.: Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys. Rev. A 85, 053803 (2012)

    Google Scholar 

  41. Gomez-Diaz, J.S., Perruisseau-Carrier, J.: Graphene based plasmonic switches at near infrared frequencies. Opt. Express 21, 15490–15504 (2013)

    Google Scholar 

  42. Gan, C.H., Chu, H.S., Li, E.P.: Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies. Phys. Rev. B 85, 125431 (2012)

    Google Scholar 

  43. Hu, F., Yi, H., Zhou, Z.: Band-pass plasmonic slot filter with band selection and spectrally splitting capabilities. Opt. Express 19, 4848–4855 (2011)

    Google Scholar 

  44. Gusyunin, V.P., Sharapov, S.G., Carbotte, J.P.: Sum rules for the optical and Hall conductivity in graphene. Phys. Rev. B 75, 165407 (2007)

    Google Scholar 

  45. Hanson, G.W.: Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J. Appl. Phys. 103, 064302 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Dolatabady.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolatabady, A., Granpayeh, N. & Abedini, M. Frequency-tunable logic gates in graphene nano-waveguides. Photon Netw Commun 39, 187–194 (2020). https://doi.org/10.1007/s11107-020-00881-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-020-00881-0

Keywords

Navigation