Skip to main content

Advertisement

Log in

Silver nanoparticles biosynthesized by Anabaena flos-aquae enhance the apoptosis in breast cancer cell line

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) are one of the new cancer treatment tools due to their unique properties that enhance potential therapeutic efficacy. In this study, we describe the extracellular biosynthesis and anticancer activity of AgNPs using the Anabaena flos-aquae biomass extract as reducing agent. The formation of dark-brown \(\hbox {AgNO}_{{3}}\)/extract solution confirmed the reduction of silver ions into AgNPs. In addition, the ultraviolet–visible spectroscopy showed the surface plasmon peak at 425 nm as characteristic peak for AgNPs. Transmission electron microscopy and scanning electron microscopy showed highly stable and mostly spherical AgNPs with average size of 5–25 nm. Fourier transform infrared spectral analysis confirmed the presence of biomolecules in the extract involved in the reduction and stabilization of AgNPs. In vitro, study of anticancer and cytotoxic effect of AgNPs and extract against T47D cell lines by MTT assay and flow cytometry confirmed the anti-proliferation potential of AgNPs against breast cancer cells. In conclusion, our results revealed that Anabaena can be used as a good organism for biologically synthesis of AgNPs and confirmed the potent therapeutic value of these nanoparticles as anticancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sharma V K, Yngard R A and Lin Y 2009 Adv. Colloid Interface Sci. 145 83

    Article  CAS  Google Scholar 

  2. Desireddy A, Conn B E, Guo J, Yoon B, Barnett R N and Monahan B M 2013 Nature 501 399

    Article  CAS  Google Scholar 

  3. Pulit-Prociak J and Banach M 2016 Open Chem. 14 76

    Article  CAS  Google Scholar 

  4. Le Ouay B and Stellacci F 2015 Nano Today 10 339

    Article  Google Scholar 

  5. Raghunandan D, Ravishankar B, Sharanbasava G, Mahesh D B, Harsoor V, Yalagatti M S et al 2011 Cancer Nanotechnol. 2 57

    Article  CAS  Google Scholar 

  6. Gonzalez L, Lison D and Kirsch-Volders M 2008 Nanotoxicology 2 252

    Article  Google Scholar 

  7. Ray P C, Yu H and Fu P P 2009 J. Environ. Sci. Health. C: Environ. Carcinog. Ecotoxicol. Rev. 27 1

    Article  CAS  Google Scholar 

  8. Abdal Dayem A, Hossain M K, Lee S B, Kim K, Saha S K and Yang G M 2017 Int. J. Mol. Sci. 18 120

    Article  Google Scholar 

  9. Iravani S, Korbekandi H, Mirmohammadi S V and Zolfaghari B 2014 Res. Pharm. Sci. 9 385

    CAS  Google Scholar 

  10. Dimitrijevic N M, Bartels D, Jonah C D, Takahashi K and Rajh T 2001 J. Phys. Chem. 105 954

    Article  CAS  Google Scholar 

  11. Nasretdinova G R, Fazleeva R R, Mukhitova R K, Nizameev I R, Kadirov M K and Ziganshina A Y 2015 Electrochem. Commun. 50 69

    Article  CAS  Google Scholar 

  12. Callegari M, Tonti D and Chergui M 2003 Nano Lett. 3 1565

    Article  CAS  Google Scholar 

  13. Junejo Y and Sirajuddin A 2014 J. Inorg. Organomet. Polym. Mater. 24 401

    Article  CAS  Google Scholar 

  14. Panda K K, Achary V M, Krishnaveni R, Padhi B K, Sarangi S N, Sahu S N et al 2011 Toxicol. In Vitro 25 1097

    Article  CAS  Google Scholar 

  15. Schneidewind H, Schuler T, Strelau K K, Weber K, Cialla D and Diegel M 2012 Beilstein J. Nanotechnol. 3 404

    Article  Google Scholar 

  16. Iravani S 2011 Green Chem. 13 2638

    Article  CAS  Google Scholar 

  17. Balaji D S, Basavaraja S, Deshpande R, Mahesh D B, Prabhakar B K and Venkataraman A 2009 Colloids Surf. B: Biointerfaces 68 88

    Article  CAS  Google Scholar 

  18. Sudha S S, Rajamanickam K and Rengaramanujam J 2013 Ind. J. Exp. Biol. 52 393

    Google Scholar 

  19. Lengke M F and Fleet M E 2007 Langmuir 23 2694

    Article  CAS  Google Scholar 

  20. Yu Y, You L, Liu D, Hollinshead W, Tang Y J and Zhang F 2013 Mar. Drugs 11 2894

    Article  Google Scholar 

  21. Patel V, Berthold D, Puranik P and Gantar M 2015 Biotechnol. Rep. 5 112

    Article  Google Scholar 

  22. Tao Z, Shi A, Lu C, Song T, Zhang Z and Zhao J 2015 Cell Biochem. Biophys. 72 333

    Article  CAS  Google Scholar 

  23. Sanpui P, Chattopadhyay A and Ghosh S S 2011 ACS Appl. Mater. Interfaces 3 218

    Article  CAS  Google Scholar 

  24. Canovi M, Lucchetti J, Stravalaci M, Re F, Moscatelli D, Bigini P et al 2012 Sensors 12 16420

    Article  CAS  Google Scholar 

  25. Jeyaraj M, Renganathan A, Sathishkumar G, Ganapathi A and Premkumar K 2015 RSC Adv. 3 2159

    Article  Google Scholar 

  26. Zhang X F, Liu Z G, Shen W and Gurunathan S 2016 Int. J. Mol. Sci. 17 1534

    Article  Google Scholar 

  27. Sankar R, Karthik A, Prabu A, Karthik S, Shivashankari K S and Ravikumar V 2013 Colloids Surf. B: Biointerfaces 108 80

    Article  CAS  Google Scholar 

  28. Reddy N J, Vali D N and Rani M 2014 Mater. Sci. Eng. 34 115

    Article  CAS  Google Scholar 

  29. Vinardell M P and Mitjans M 2015 Nano 5 1004

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Salehzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimzadeh, Z., Salehzadeh, A., Naeemi, A.S. et al. Silver nanoparticles biosynthesized by Anabaena flos-aquae enhance the apoptosis in breast cancer cell line. Bull Mater Sci 43, 92 (2020). https://doi.org/10.1007/s12034-020-2064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-2064-1

Keywords

Navigation