Skip to main content
Log in

A Review on Ag-Nanostructures for Enhancement in Shelf Time of Fruits

  • Topical Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Security and safety of fresh produce has become global issue so the protection of fruits and vegetables should be the primary focus for agricultural industry. Shelf time of fresh produce can be influenced by many pre-harvest and post-harvest factors which should be controlled. Different post-harvest treatments such as physical, chemical and gaseous have been discussed here to maintain high safety standards of fresh produce. To overcome mishandlings by previously reported conventional methods, nanotechnology has emerged as a promising tool in the food processing industry, providing new insights about post-harvest technologies to overcome losses. This study also reveals that managing pre-harvest and post-harvest factors will lessen the deprivation of post-harvest standard features in fruits. Effect of silver nanoparticles on shelf life of fruits has been studied which indicates that shelf life of fruits increases when treated with nanomaterials as compared to chemical and other physical treatment which are used to reduce post-harvest losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sandhya, Modified atmosphere packaging of fresh produce: Current status and future needs. LWT Food Sci. Technol. 43(3), 381–392 (2010)

    CAS  Google Scholar 

  2. F. Artés et al., Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol. Technol. 51(3), 287–296 (2009)

    Google Scholar 

  3. M.A. Augustin et al., Role of food processing in food and nutrition security. Trends Food Sci. Technol. 56, 115–125 (2016)

    CAS  Google Scholar 

  4. A.N. Olaimat, R.A. Holley, Factors influencing the microbial safety of fresh produce: a review. Food Microbiol. 32(1), 1–19 (2012)

    CAS  PubMed  Google Scholar 

  5. P. Karlovsky et al., Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res. 32(4), 179–205 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. F. Chemat et al., Review of green food processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Technol. 41, 357–377 (2017)

    CAS  Google Scholar 

  7. F. Lopez-Galvez et al., Effect of new sanitizing formulations on quality of fresh-cut iceberg lettuce. Postharvest Biol. Technol. 85, 102–108 (2013)

    CAS  Google Scholar 

  8. A. Landfeld et al., Decontamination of cut carrot by persteril® agent based on the action of peroxyacetic acid. Czech J. Food Sci. 28(6), 564–571 (2011)

    Google Scholar 

  9. Z. Singh et al., Nitric oxide in the regulation of fruit ripening: challenges and thrusts. Stewart Postharvest Rev. 9(4), 1–11 (2013)

    Google Scholar 

  10. S.A. Baskaran et al., Efficacy of plant-derived antimicrobials as antimicrobial wash treatments for reducing enterohemorrhagic Escherichia coli O157: H7 on apples. J. Food Sci. 78(9), M1399–M1404 (2013)

    CAS  PubMed  Google Scholar 

  11. E. Fallik, Prestorage hot water treatments (immersion, rinsing and brushing). Postharvest Biol. Technol. 32(2), 125–134 (2004)

    Google Scholar 

  12. R.E. Paull, N.J. Chen, Heat treatment and fruit ripening. Postharvest Biol. Technol. 21(1), 21–37 (2000)

    Google Scholar 

  13. N.B. Gol, P.R. Patel, T.R. Rao, Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 85, 185–195 (2013)

    CAS  Google Scholar 

  14. R. Dhall, Advances in edible coatings for fresh fruits and vegetables: a review. Crit. Rev. Food Sci. Nutr. 53(5), 435–450 (2013)

    CAS  PubMed  Google Scholar 

  15. J. Farkas, D. Ehlermann, C. Mohácsi-Farkas, Food Technologies: Food Irradiation (Elsevier, Amsterdam, 2014), pp. 178–186

    Google Scholar 

  16. P. Ferrier, Irradiation as a quarantine treatment. Food Policy 35(6), 548–555 (2010)

    Google Scholar 

  17. R. Mahto, M. Das, Effect of gamma irradiation on the physico-chemical and visual properties of mango (Mangifera indica L.), cv. ‘Dushehri’and ‘Fazli’stored at 20 C. Postharvest Biol. Technol 86, 447–455 (2013)

    CAS  Google Scholar 

  18. A. Ali, M.K. Ong, C.F. Forney, Effect of ozone pre-conditioning on quality and antioxidant capacity of papaya fruit during ambient storage. Food Chem. 142, 19–26 (2014)

    CAS  PubMed  Google Scholar 

  19. T. Suslow, Ozone Applications for Postharvest Disinfection of Edible Horticultural Crops (UCANR Publications, Oakland, 2004)

    Google Scholar 

  20. D. Garner, C.H. Crisosto, E. Otieza, Controlled atmosphere storage and aminoethoxyvinylglycine postharvest dip delay post cold storage softening ofsnow king'peach. HortTechnology 11(4), 598–602 (2001)

    CAS  Google Scholar 

  21. F. Sardabi et al., The effects of 1-Methylcyclopropen (1-MCP) and potassium permanganate coated zeolite nanoparticles on shelf life extension and quality loss of golden delicious apples. J. Food Process. Preserv. 38(6), 2176–2182 (2014)

    CAS  Google Scholar 

  22. L. Vayssieres, On the design of advanced metal oxide nanomaterials. Int. J. Nanotechnol. 1(1–2), 1–41 (2004)

    CAS  Google Scholar 

  23. N. Sozer, J.L. Kokini, Nanotechnology and its applications in the food sector. Trends Biotechnol. 27(2), 82–89 (2009)

    CAS  PubMed  Google Scholar 

  24. C.P. Toumey, Reading feynman into nanotechnology: a text for a new science. Techné: Res. Philos. Technol. 12(3), 133–168 (2008)

    Google Scholar 

  25. L.H. Mattoso, E.S.D. Medeiros, L. MartinNeto, A revolução nanotecnológica e o potencial para o agronegócio. Rev. de Polít. Agríc. 14(4), 38–46 (2005)

    Google Scholar 

  26. C.J. Murphy, Sustainability as an emerging design criterion in nanoparticle synthesis and applications. J. Mater. Chem. 18(19), 2173–2176 (2008)

    CAS  Google Scholar 

  27. A.C. Pandey, S.S. Sanjay, R.S. Yadav, Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J. Exp. Nanosci. 5(6), 488–497 (2010)

    CAS  Google Scholar 

  28. V.K. Bajpai et al., Prospects of using nanotechnology for food preservation, safety, and security. J. Food Drug Anal. 26(4), 1201–1214 (2018)

    CAS  PubMed  Google Scholar 

  29. M. Cushen et al., Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci. Technol. 24(1), 30–46 (2012)

    CAS  Google Scholar 

  30. T.P Labuza, L.M. Szybist, J. Peck, Perishable refrigerated products and home practices survey. Res Agric Appl Econ. (2001). https://doi.org/10.22004/ag.econ.14337

  31. A. Giménez, F. Ares, G. Ares, Sensory shelf-life estimation: a review of current methodological approaches. Food Res. Int. 49(1), 311–325 (2012)

    Google Scholar 

  32. H.T. Lawless, H. Heymann, Sensory Evaluation of Food: Principles and Practices (Springer, Berlin, 2010)

    Google Scholar 

  33. K. Ziani et al., Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocoll. 23(8), 2309–2314 (2009)

    CAS  Google Scholar 

  34. N. Aihara, K. Torigoe, K. Esumi, Preparation and characterization of gold and silver nanoparticles in layered laponite suspensions. Langmuir 14(17), 4945–4949 (1998)

    CAS  Google Scholar 

  35. X.Z. Lin, X. Teng, H. Yang, Direct synthesis of narrowly dispersed silver nanoparticles using a single-source precursor. Langmuir 19(24), 10081–10085 (2003)

    CAS  Google Scholar 

  36. G. Hough, Sensory Shelf Life Estimation of Food Products (Crc Press, NY, 2010)

    Google Scholar 

  37. L. Manzocco, C. Lagazio, Coffee brew shelf life modelling by integration of acceptability and quality data. Food Qual. Prefer. 20(1), 24–29 (2009)

    Google Scholar 

  38. K.B. Murray, J.L. Schlacter, The impact of services versus goods on consumers’ assessment of perceived risk and variability. J. Acad. Mark. Sci. 18(1), 51–65 (1990)

    Google Scholar 

  39. H.H. Severson, P. Slovic, S. Hampson, Adolescents perception of risk: understanding and preventing high risk behavior. ACR 20(1), 177–182 (1993)

    Google Scholar 

  40. E.U. Weber, R.A. Milliman, Perceived risk attitudes: relating risk perception to risky choice. Manage. Sci. 43(2), 123–144 (1997)

    Google Scholar 

  41. B. Ludäscher et al., Scientific workflow management and the Kepler system. Concurr. Comput.: Pract. Exp. 18(10), 1039–1065 (2006)

    Google Scholar 

  42. P. Rozin, C. Nemeroff, The laws of sympathetic magic: a psychological analysis of similarity and contagion, in Cultural Psychology: Essays on Comparative Human Development, ed. by J.W. Stigler, R.A. Shweder, G. Herdt (Cambridge University Press, 1990), pp. 205–232. https://doi.org/10.1017/CBO9781139173728.006

  43. P. Rozin, H. Tuorila, Simultaneous and temporal contextual influences on food acceptance. Food Qual. Prefer. 4(1–2), 11–20 (1993)

    Google Scholar 

  44. H. Stone, J.L. Sidel, Introduction to Sensory Evaluation. Sensory Evaluation Practices (Academic Press, Boston, 2004), pp. 1–19

    Google Scholar 

  45. P.F. Hopkins et al., A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids. Astrophys J Suppl Ser 163(1), 1 (2006)

    CAS  Google Scholar 

  46. P.E. Ponˇka et al., Mobilization of iron from reticulocytes: identification of pyridoxal isonicotinoyl hydrazone as a new iron chelating agent. FEBS Lett. 97(2), 317–321 (1979)

    Google Scholar 

  47. G. Ares, A. Giménez, A. Gámbaro, Understanding consumers’ perception of conventional and functional yogurts using word association and hard laddering. Food Qual. Prefer. 19(7), 636–643 (2008)

    Google Scholar 

  48. M. Walkling-Ribeiro et al., Shelf life and sensory evaluation of orange juice after exposure to thermosonication and pulsed electric fields. Food Bioprod. Process. 87(2), 102–107 (2009)

    Google Scholar 

  49. N. Benkeblia et al., Preharvest and harvest factors influencing the postharvest quality of tropical and subtropical fruits, in Postharvest Biology and Technology of Tropical and Subtropical Fruits (Elsevier, Amsterdam, 2011), pp. 112–142

    Google Scholar 

  50. Ö. Yaman, L. Bayındırlı, Effects of an edible coating, fungicide and cold storage on microbial spoilage of cherries. Eur. Food Res. Technol. 213(1), 53–55 (2001)

    CAS  Google Scholar 

  51. R. Amarowicz et al., Free radical-scavenging capacity, antioxidant activity, and phenolic composition of green lentil (Lens culinaris). Food Chem. 121(3), 705–711 (2010)

    CAS  Google Scholar 

  52. V. Usenik, J. Fabčič, F. Štampar, Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry (Prunus avium L.). Food Chem. 107(1), 185–192 (2008)

    CAS  Google Scholar 

  53. P. Flandrin, G. Rilling, P. Goncalves, Empirical mode decomposition as a filter bank. IEEE Signal Process. Lett. 11(2), 112–114 (2004)

    Google Scholar 

  54. G. Oms-Oliu et al., Effects of high-intensity pulsed electric field processing conditions on lycopene, vitamin C and antioxidant capacity of watermelon juice. Food Chem. 115(4), 1312–1319 (2009)

    CAS  Google Scholar 

  55. M. Bernalte et al., Influence of storage delay on quality of ‘Van’sweet cherry. Postharvest Biol. Technol. 28(2), 303–312 (2003)

    Google Scholar 

  56. M. Esti et al., Physicochemical and sensory fruit characteristics of two sweet cherry cultivars after cool storage. Food Chem. 76(4), 399–405 (2002)

    CAS  Google Scholar 

  57. S. Shimbo et al., Cadmium and lead contents in rice and other cereal products in Japan in 1998–2000. Sci. Total Environ. 281(1–3), 165–175 (2001)

    CAS  PubMed  Google Scholar 

  58. A. Maedche et al., Mafra—a mapping framework for distributed ontologies, in International Conference on Knowledge Engineering and Knowledge Management, ed. by A. Gómez-Pérez, V.R. Benjamins (Springer, Berlin, 2002), pp. 235–250

    Google Scholar 

  59. F. Demir, I.H. Kalyoncu, Some nutritional, pomological and physical properties of cornelian cherry (Cornus mas L.). J. Food Eng. 60(3), 335–341 (2003)

    Google Scholar 

  60. G. Muskovics et al., Changes in physical properties during fruit ripening of Hungarian sweet cherry (Prunus avium L.) cultivars. Postharvest Biol. Technol. 40(1), 56–63 (2006)

    Google Scholar 

  61. Ö. Yaman, L. Bayoιndιrlι, Effects of an edible coating and cold storage on shelf-life and quality of cherries. LWT Food Sci. Technol. 35(2), 146–150 (2002)

    CAS  Google Scholar 

  62. C. Pagani et al., The swift X-ray flaring afterglow of GRB 050607. Astrophys. J. 645(2), 1315 (2006)

    Google Scholar 

  63. J. Kalajdžić et al., Postharvest quality of sweet cherry fruits as affected by bioregulators. Acta Sci. Pol. Hortorum Cultus 18(5), 189–199 (2019). https://doi.org/10.24326/asphc.2019.5.19

    Google Scholar 

  64. A. Conte et al., Ready-to-eat sweet cherries: study on different packaging systems. Innov. Food Sci. Emerg. Technol. 10(4), 564–571 (2009)

    CAS  Google Scholar 

  65. J. Bright, S. Marte. Cherry growing in NSW. in Agfacts, vol. 5, ed. by NSW Agriculture (2004), pp 1–8

  66. S. Dürr et al., Observation of molecules produced from a Bose-Einstein condensate. Phys. Rev. Lett. 92(2), 020406 (2004)

    PubMed  Google Scholar 

  67. M. Venturini, D. Blanco, R. Oria, In vitro antifungal activity of several antimicrobial compounds against Penicillium expansum. J. Food Prot. 65(5), 834–839 (2002)

    CAS  PubMed  Google Scholar 

  68. G. Romanazzi et al., Effect of short hypobaric treatments on postharvest rots of sweet cherries, strawberries and table grapes. Postharvest Biol. Technol. 22(1), 1–6 (2001)

    Google Scholar 

  69. E. Feliziani et al., Pre-and postharvest treatment with alternatives to synthetic fungicides to control postharvest decay of sweet cherry. Postharvest Biol. Technol. 78, 133–138 (2013)

    CAS  Google Scholar 

  70. A.C. Cameron, P.C. Talasila, D.W. Joles, Predicting film permeability needs for modified-atmosphere packaging of lightly processed fruits and vegetables. HortScience 30(1), 25–34 (1995)

    Google Scholar 

  71. J. Fernandez-Lopez et al., Antioxidant and antibacterial activities of natural extracts: application in beef meatballs. Meat Sci. 69(3), 371–380 (2005)

    CAS  PubMed  Google Scholar 

  72. D. Kilcast, P. Subramaniam, Food Shelf Life Stability (CRC Press LLC, Boca Raton, 2001)

    Google Scholar 

  73. L. Wang et al., Effect of nano-SiO2 packing on postharvest quality and antioxidant capacity of loquat fruit under ambient temperature storage. Food Chem. 315, 126295 (2020)

    CAS  PubMed  Google Scholar 

  74. W. Liu, M. Zhang, B. Bhandari, Nanotechnology—a shelf life extension strategy for fruits and vegetables. Crit. Rev. Food Sci. Nutr. (2019). https://doi.org/10.1080/10408398.2019.1589415

    Article  PubMed  Google Scholar 

  75. J.U. Chandirika, S.T. Selvi, G. Annadurai, Synthesis and characterization of silver nanoparticle using Melia azedarach for vegetable coating and antibacterial activity. J Innov. Pharma Biol. Sci. 5, 38–42 (2018)

    CAS  Google Scholar 

  76. M.A. Farooqui et al., Extraction of silver nanoparticles from the leaf extracts of Clerodendrum inerme. Digest J. Nanomater. Biostruct. 5(1), 43–49 (2010)

    Google Scholar 

  77. Y. Zhang et al., Synergetic antibacterial effects of silver nanoparticles@ aloe vera prepared via a green method. Nano Biomed. Eng. 2(4), 252–257 (2010)

    CAS  Google Scholar 

  78. L. Gao et al., Silver nanoparticles biologically synthesised using tea leaf extracts and their use for extension of fruit shelf life. IET Nanobiotechnol. 11(6), 637–643 (2017)

    Google Scholar 

  79. A. Mohammed Fayaz et al., Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. J. Agric. Food Chem. 57(14), 6246–6252 (2009)

    CAS  PubMed  Google Scholar 

  80. L. Zhou et al., Effect OF PE/AG2O nano-packaging on the quality of apple slices. J. Food Qual. 34(3), 171–176 (2011)

    CAS  Google Scholar 

  81. C. Costa et al., Antimicrobial silver-montmorillonite nanoparticles to prolong the shelf life of fresh fruit salad. Int. J. Food Microbiol. 148(3), 164–167 (2011)

    CAS  PubMed  Google Scholar 

  82. J.A. Gudadhe et al., Preparation of an agar-silver nanoparticles (A-AgNp) film for increasing the shelf-life of fruits. IET Nanobiotechnol. 8(4), 190–195 (2013)

    Google Scholar 

  83. P. Chowdappa et al., Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. Afr. J. Microbiol. Res. 8(17), 1803–1812 (2014)

    Google Scholar 

  84. S. Kumar et al., Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packag. Shelf Life 16, 178–184 (2018)

    Google Scholar 

  85. J. An et al., Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Sci. Technol. 41(6), 1100–1107 (2008)

    CAS  Google Scholar 

  86. S. Bhople et al., Myxobacteria-mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples. IET Nanobiotechnol. 10(6), 389–394 (2016)

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohsin Ijaz or Tahir Iqbal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijaz, M., Zafar, M., Afsheen, S. et al. A Review on Ag-Nanostructures for Enhancement in Shelf Time of Fruits. J Inorg Organomet Polym 30, 1475–1482 (2020). https://doi.org/10.1007/s10904-020-01504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01504-x

Keywords

Navigation