Skip to main content
Log in

Oxidative stress assessment in sickle cell anemia patients treated with hydroxyurea

Annals of Hematology Aims and scope Submit manuscript

Abstract

Hydroxyurea (HU) is used as a therapy in sickle cell anemia (SCA). Many studies have established that HU improves patient quality of life by reducing symptoms. However, the effect of HU on erythrocytes is not well-described. We evaluated several parameters related to oxidative stress and total lipid content of erythrocytes in patients with SCA. The patient cohort consisted of 7 SCA patients treated with HU, 17 untreated SCA patients, and 15 healthy subjects. Erythrocytes from patients with SCA displayed increased oxidative stress relative to the control group, including higher thiobarbituric acid reactive substances (TBARS), Fe3+ content, and osmotic fragility, and decreased total cholesterol. We observed that treatment of SCA patients with HU increased Fe3+ content and activity of glutathione peroxidase, and decreased glutathione reductase activity, glutathione levels, total cholesterol, and phospholipid content comaperaded to patients untreated with HU. Thus, HU alters biochemical characteristics of erythrocytes; future studies will determine whether they are beneficial or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Di Nuzzo DV, Fonseca SF (2004) Sickle cell disease and infection. J Pediatr 80:347–354

    Article  Google Scholar 

  2. Pauling L, Itano HA, JE SJS, Wells IC (1949) Sickle cell anemia a molecular disease. Science 110:543–548

    Article  CAS  PubMed  Google Scholar 

  3. Peterson CM, Tsairis P, Onishi A, Lu YS, Grady R (1974) Sodium cyanate induced polyneuropathy in patients with sickle-cell disease. Ann Intern Med 81:152–158

    Article  CAS  PubMed  Google Scholar 

  4. Bunn HF (1997) Pathogenesis and treatment of sickle cell disease. N Engl J Med 337:762–769

    Article  CAS  PubMed  Google Scholar 

  5. Safo MK, Abdulmalik O, Danso-Danquah R, Burnett JC, Nokuri S, Joshi GS, Musayev FN, Asakura T, Abraham DJ (2004) Structural basis for the potent antisickling effect of a novel class of five-membered heterocyclic aldehydic compounds. J Med Chem 47:4665–4676

    Article  CAS  PubMed  Google Scholar 

  6. El Nemer W, Wautier MP, Rahuel C, Gane P, Hermand P, Galacteros F, Wautier JL, Cartron JP, Colin Y, Le Van Kim C (2007) Endothelial Lu/BCAM glycoproteins are novel ligands for red blood cell alpha4beta1 integrin: role in adhesion of sickle red blood cells to endothelial cells. Blood 109:3544–3551

    Article  PubMed  CAS  Google Scholar 

  7. Taylor JG, Nolan VG, Mendelsohn L, Kato GJ, Gladwin MT, Steinberg MH (2008) Chronic hyper-hemolysis in sickle cell anemia: association of vascular complications and mortality with less frequent vasoocclusive pain. PLoS One 3:e2095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dailly E, Urien S, Barre J, Reinert P, Tillement JP (1998) Role of bilirubin in the regulation of the total peroxyl radical trapping antioxidant activity of plasma in sickle cell disease. Biochem Biophys Res Commun 248:303–306

    Article  CAS  PubMed  Google Scholar 

  9. Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34:163–189

    Article  CAS  PubMed  Google Scholar 

  10. Steinberg MH (1999) Management of sickle cell disease. New Engl J Med 340:1021–1030

    Article  CAS  PubMed  Google Scholar 

  11. King SB (2003) The nitric oxide producing reactions of hydroxyurea. Curr Med Chem 10(6):437–452

    Article  CAS  PubMed  Google Scholar 

  12. Ware RE (2010) How I use hydroxyurea to treat young patients with sickle cell anemia. Blood 115:5300–5311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gladwin MT, Shelhamer JH, Ognibene FP, Pease-Fye ME, Nichols JS, Link B, Patel DB, Jankowski MA, Pannell LK, Schechter AN, Rodgers GP (2002) Nitric oxide donor properties of hydroxyurea in patients with sickle cell disease. Br J Haematol 116:436–444

    Article  CAS  PubMed  Google Scholar 

  14. Olujohungbe A, Cinkotai KI, Yardumian A (1998) Hydroxyurea therapy for sickle cell disease in Britain: disappointing recruitment despite promising results. BMJ 316:1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lanaro C, Franco-Penteado CF, Albuqueque DM, Saad ST, Conran N, Costa FF (2009) Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. J Leukoc Biol 85:235–242

    Article  CAS  PubMed  Google Scholar 

  16. Steinberg MH, Dreiling BJ, Morrison FS, Necheles TF (1973) Mild sickle cell disease. Clinical and laboratory studies. Jama 224:317–321

    Article  CAS  PubMed  Google Scholar 

  17. Schacter L, Warth JA, Gordon EM, Prasad A, Klein BL (1988) Altered amount and activity of superoxide dismutase in sickle cell anemia. FASEB J 2:237–243

    Article  CAS  PubMed  Google Scholar 

  18. Costa H, Santos R, Lima E (2006) A simple automated procedure for thiol measurement in human serum samples. J Bras Patol Med Lab 42:345–350

    Article  Google Scholar 

  19. Adams PC (1995) Determining iron content in foods by spectrophotometry. Filtr Resid 72:649–651

    CAS  Google Scholar 

  20. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  21. Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3523

    CAS  PubMed  Google Scholar 

  22. Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  PubMed  Google Scholar 

  23. Flohe L, Gunzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32:132–134

    Article  CAS  PubMed  Google Scholar 

  24. Nakamura O, Hosada S (1974) Purification and properties of rat liver glutathione peroxidase. BiochimBiophysActa 358:251–261

    CAS  Google Scholar 

  25. Racker E (1955) Glutathione reductase from bakers’ yeast and beef liver. J Biol Chem 217:855–856

    CAS  PubMed  Google Scholar 

  26. Rose HG, Oklander M (1965) Improved procedure for the extraction of lipids from human erythrocytes. J Lipid Res 6:428–431

    CAS  PubMed  Google Scholar 

  27. Vokurkova M, Novakova O, Dobesova Z, Kunes J, Zicha J (2005) Relationships between membrane lipids and ion transport in red blood cells of Dahl rats. Life Sci 77:1452–1464

    Article  CAS  PubMed  Google Scholar 

  28. Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  29. Higgins J (1987) Separation and analysis of membrane lipid components. In: Findlay J, Evans W (eds) Biological membranes: a practical approach. IRL Press, Oxford, pp 103–107

    Google Scholar 

  30. Ministry of Health. Clinical protocol and therapeutic guidelines-sickle cell disease. Concierge n° 55, de 29 de January 2010

  31. Das SK, Nair RC (1980) Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation of normal and sickled erythrocytes. Br J Haematol 44:87–92

    Article  CAS  PubMed  Google Scholar 

  32. Al-Naama LM, Hassan MK, Mehdi JK (2015) Association of erythrocytes antioxidant enzymes and their cofactors with markers of oxidative stress in patients with sickle cell anemia. Qatar Med J 2015:14

    Article  PubMed  Google Scholar 

  33. Spiteller P, Spiteller G (1998) Strong dependence of the lipid peroxidation product spectrum whether Fe2+/O2 or Fe3+/O2 is used as oxidant. Biochim Biophys Acta 1392:23–40

    Article  CAS  PubMed  Google Scholar 

  34. Magalhães SM (2011) Oxidative status in sickle cell anemia. Rev Bras Hematol Hemoter 33:177–178

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fatima M, Kesharwani RK, Misra K, Rizvi SI (2013) Protective effect of theaflavin on erythrocytes subjected to in vitro oxidative stress. Biochem Res Int 2013:649759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Daak AA, Ghebremeskel K, Mariniello K, Attallah B, Clough P, Elbashir MI (2013) Docosahexaenoic and eicosapentaenoic acid supplementation does not exacerbate oxidative stress or intravascular haemolysis in homozygous sickle cell patients. Prostaglandins Leukot Essent Fat Acids 89:305–311

    Article  CAS  Google Scholar 

  37. Malec J, Przybyszewski WM, Grabarczyk M, Sitarska E (1984) Hydroxyurea has the capacity to induce damage to human erythrocytes which can be modified by radical scavengers. Biochem Biophys Res Commun 120:566–573

    Article  CAS  PubMed  Google Scholar 

  38. Iyamu EW, Fasold H, Roa D, del Pilar AM, Asakura T, Turner EA (2001) Hydroxyurea-induced oxidative damage of normal and sickle cell hemoglobins in vitro: amelioration by radical scavengers. J Clin Lab Anal 15(1):1–7

    Article  CAS  PubMed  Google Scholar 

  39. Johnson RM, Goyette G Jr, Ravindranath Y, Ho YS (2005) Hemoglobin autoxidation and regulation of endogenous H2O2 levels in erythrocytes. Free Radic Biol Med 39:1407–1417

    Article  CAS  PubMed  Google Scholar 

  40. Cho CS, Kato GJ, Yang SH, Bae SW, Lee JS, Gladwin MT, Rhee SG (2010) Hydroxyurea-induced expression of glutathione peroxidase 1 in red blood cells of individuals with sickle cell anemia. Antioxid Redox Signal 13:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu ZQ, Shan HY (2006) Cholesterol, not polyunsaturated fatty acids, is target molecule in oxidation induced by reactive oxygen species in membrane of human erythrocytes. Cell Biochem Biophys 45(2):185–193. https://doi.org/10.1385/cbb:45:2:185

    Article  CAS  PubMed  Google Scholar 

  42. Leitner GC, Neuhauser M, Weigel G, Kurze S, Fischer MB, Hocker P (2001) Altered intracellular purine nucleotides in gamma-irradiated red blood cell concentrates. Vox Sang 81:113–118

    Article  CAS  PubMed  Google Scholar 

  43. Arashiki N, Takakuwa Y (2017) Maintenance and regulation of asymmetric phospholipid distribution in human erythrocyte membranes: implications for erythrocyte functions. Curr Opin Hematol 24:167–172

    Article  CAS  PubMed  Google Scholar 

  44. Connor WE, Lin DS, Thomas G, Ey F, DeLoughery T, Zhu N (1997) Abnormal phospholipid molecular species of erythrocytes in sickle cell anemia. J Lipid Res 38:2516–2528

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Hemominas Foundation for providing samples and archives. We are thankful to Dr. Kenneth Peterson (KUMC) for the helpful evaluation of the manuscript.

Funding

This work was supported by FAPEMIG (Fundação de Amparo a Pesquisa do Estado de Minas Gerais), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: MBP, DRR, VFC, LAB, and HLS. Performed the experiments: COR. Analyzed the data: COR, MBP, DRR, VFC, HLS, and LAB. Contributed reagents/materials/analysis tools: ARB, SSC, MBP, HLS, and LAB. Wrote the paper: COR, VFC, HLS, and LAB.

Corresponding author

Correspondence to Hérica L. Santos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renó, C.O., Barbosa, A.R., de Carvalho, S.S. et al. Oxidative stress assessment in sickle cell anemia patients treated with hydroxyurea. Ann Hematol 99, 937–945 (2020). https://doi.org/10.1007/s00277-020-03987-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-020-03987-7

Keywords

Navigation