Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Presynaptic calcium channels: specialized control of synaptic neurotransmitter release

Abstract

Chemical synapses are heterogeneous junctions formed between neurons that are specialized for the conversion of electrical impulses into the exocytotic release of neurotransmitters. Voltage-gated Ca2+ channels play a pivotal role in this process as they are the major conduits for the Ca2+ ions that trigger the fusion of neurotransmitter-containing vesicles with the presynaptic membrane. Alterations in the intrinsic function of these channels and their positioning within the active zone can profoundly alter the timing and strength of synaptic output. Advances in optical and electron microscopic imaging, structural biology and molecular techniques have facilitated recent breakthroughs in our understanding of the properties of voltage-gated Ca2+ channels that support their presynaptic functions. Here we examine the nature of these channels, how they are trafficked to and anchored within presynaptic boutons, and the mechanisms that allow them to function optimally in shaping the flow of information through neural circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cav channel nomenclature and properties.
Fig. 2: Synthesis and trafficking of Cav channels.
Fig. 3: Regulation of Cav1 channel inactivation at ribbon synapses.
Fig. 4: Organization and modulation of Cav2 channels in synapses.
Fig. 5: Differential synaptic recruitment of Cav channel regulatory mechanisms.

Similar content being viewed by others

References

  1. Katz, B. & Miledi, R. Ionic requirements of synaptic transmitter release. Nature 215, 651 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Wu, J. et al. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution. Nature 537, 191–196 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Zhao, Y. et al. Cryo-EM structures of apo and antagonist-bound human Cav3.1. Nature 576, 492–497 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Hagiwara, S., Ozawa, S. & Sand, O. Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J. Gen. Physiol. 65, 617–644 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Carbone, E. & Lux, H. D. A low voltage-activated fully inactivating Ca channel in vertebrate sensory neurones. Nature 310, 501–502 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Bean, B. P. Two kinds of calcium channels in canine atrial cells. J. Gen. Physiol. 86, 1–30 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Helton, T. D., Xu, W. & Lipscombe, D. Neuronal L-type calcium channels open quickly and are inhibited slowly. J. Neurosci. 25, 10247–10251 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gray, A. C., Raingo, J. & Lipscombe, D. Neuronal calcium channels: splicing for optimal performance. Cell Calcium 42, 409–417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liao, P., Zhang, H. Y. & Soong, T. W. Alternative splicing of voltage-gated calcium channels: from molecular biology to disease. Pflug. Arch. 458, 481–487 (2009).

    Article  CAS  Google Scholar 

  10. Reuter, H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 301, 569–574 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Nowycky, M. C., Fox, A. P. & Tsien, R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316, 440–446 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. Hess, P., Lansman, J. B. & Tsien, R. W. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311, 538–544 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Takahashi, M., Seager, M. J., Jones, J. F., Reber, B. F. X. & Catterall, W. A. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc. Natl Acad. Sci. USA 84, 5478–5482 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tanabe, T. et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328, 313–318 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Ellis, S. B. et al. Sequence and expression of mRNAs encoding the α1 and α2 subunits of a DHP-sensitive calcium channel. Science 241, 1661–1664 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Mikami, A. et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340, 230–233 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Williams, M. E. et al. Structure and functional expression of α1, α2, and β subunits of a novel human neuronal calcium channel subtype. Neuron 8, 71–84 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Bech-Hansen, N. T. et al. Loss-of-function mutations in a calcium channel a1 subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nature Genet. 19, 264–267 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Strom, T. M. et al. An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat. Genet. 19, 260–263 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, W. F. & Lipscombe, D. Neuronal Cav1.3α1 L-type channels activate at relatively hyperpolarized membrane potentials and are incompletely inhibited by dihydropyridines. J. Neurosci. 21, 5944–5951 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koschak, A. et al. α1D (Cav1.3) subunits can form L-type Ca2+ channels activating at negative voltages. J. Biol. Chem. 276, 22100–22106 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Koschak, A. et al. Cav1.4α1 subunits can form slowly inactivating dihydropyridine-sensitive L-type Ca2+ channels lacking Ca2+-dependent inactivation. J. Neurosci. 23, 6041–6049 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Starr, T. V. B., Prystay, W. & Snutch, T. P. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc. Natl Acad. Sci. USA 88, 5621–5625 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mori, Y. et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 350, 398–402 (1991).

    Article  CAS  PubMed  Google Scholar 

  25. Soong, T. W. et al. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260, 1133–1136 (1993).

    Article  CAS  PubMed  Google Scholar 

  26. Perez-Reyes, E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol. Rev. 83, 117–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Ertel, E. A. et al. Nomenclature of voltage-gated calcium channels. Neuron 25, 533–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Buraei, Z. & Yang, J. The β subunit of voltage-gated Ca2+ channels. Physiol. Rev. 90, 1461–1506 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Pragnell, M. et al. Calcium channel β-subunit binds to a conserved motif in the I-II cytoplasmic linker of the α1-subunit. Nature 368, 67–70 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi, S. X., Mittman, S. & Colecraft, H. M. Distinctive modulatory effects of five human auxiliary β2 subunit splice variants on L type calcium channel gating. Biophys. J. 84, 3007–3021 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, A. et al. Characterization of Cav1.4 complexes (α11.4, β2, and α2δ-4) in HEK293T Cells and in the retina. J. Biol. Chem. 290, 1505–1521 (2015).

    Article  PubMed  CAS  Google Scholar 

  32. Muller, C. S. et al. Quantitative proteomics of the Cav2 channel nano-environments in the mammalian brain. Proc. Natl Acad. Sci. USA 107, 14950–14957 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Neef, J. et al. The Ca2+ channel subunit β2 regulates Ca2+ channel abundance and function in inner hair cells and is required for hearing. J. Neurosci. 29, 10730–10740 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dolphin, A. C. Calcium channel auxiliary α2δ and β subunits: trafficking and one step beyond. Nat. Rev. Neurosci. 13, 542–555 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Jay, S. D. et al. Structural characterization of the dihydropyridine-sensitive calcium channel α2-subunit and the associated δ peptides. J. Biol. Chem. 266, 3287–3293 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. De Jongh, K. S., Warner, C. & Catterall, W. A. Subunits of purified calcium channels. α2 and δ are encoded by the same gene. J. Biol. Chem. 265, 14738–14741 (1990).

    Article  PubMed  Google Scholar 

  37. Davies, A. et al. The α2δ subunits of voltage-gated calcium channels form GPI-anchored proteins, a post-translational modification essential for function. Proc. Natl Acad. Sci. USA 107, 1654–1659 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qin, N., Yagel, S., Momplaisir, M. L., Codd, E. E. & D’Andrea, M. R. Molecular cloning and characterization of the human voltage-gated calcium channel α2δ-4 subunit. Mol. Pharmacol. 62, 485–496 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Dahimene, S. et al. The α2δ-like protein Cachd1 increases N-type calcium currents and cell surface expression and competes with α2δ-1. Cell Rep. 25, 1610–1621 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Canti, C. et al. The metal-ion-dependent adhesion site in the von Willebrand factor-A domain of α2δ subunits is key to trafficking voltage-gated Ca2+ channels. Proc. Natl Acad. Sci. USA 102, 11230–11235 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cassidy, J. S., Ferron, L., Kadurin, I., Pratt, W. S. & Dolphin, A. C. Functional exofacially tagged N-type calcium channels elucidate the interaction with auxiliary α2δ-1 subunits. Proc. Natl Acad. Sci. USA 111, 8979–8984 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, Y. et al. The auxiliary calcium channel subunit α2δ-4 is required for axonal elaboration, synaptic transmission, and wiring of rod photoreceptors. Neuron 93, 1359–1374 e1356 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fell, B. et al. α2δ-2 controls the function and trans-synaptic coupling of Cav1.3 channels in mouse inner hair cells and is essential for normal hearing. J. Neurosci. 36, 11024–11036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geisler, S. et al. Presynaptic α2δ-2 calcium channel subunits regulate postsynaptic GABAA receptor abundance and axonal wiring. J. Neurosci. 39, 2581–2605 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kadurin, I., Rothwell, S. W., Lana, B., Nieto-Rostro, M. & Dolphin, A. C. LRP1 influences trafficking of N-type calcium channels via interaction with the auxiliary α2δ-1 subunit. Sci. Rep. 7, 43802 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Letts, V. A. et al. The mouse stargazer gene encodes a neuronal Ca2+ channel γ subunit. Nat. Genet. 19, 340–347 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Tomita, S. et al. Functional studies and distribution define a family of transmembrane AMPA receptor regulatory proteins. J. Cell Biol. 161, 805–816 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meyer, J. O. et al. Disruption of the key Ca2+ binding site in the selectivity filter of neuronal voltage-gated calcium channels inhibits channel trafficking. Cell Reports 29, 22–33 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Waithe, D., Ferron, L., Page, K. M., Chaggar, K. & Dolphin, A. C. β-subunits promote the expression of Cav2.2 channels by reducing their proteasomal degradation. J. Biol. Chem. 286, 9598–9611 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Altier, C. et al. The Cavβ subunit prevents RFP2-mediated ubiquitination and proteasomal degradation of L-type channels. Nat. Neurosci. 14, 173–180 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Page, K. M., Rothwell, S. W. & Dolphin, A. C. The CaVβ subunit protects the I-II loop of the voltage-gated calcium channel, CaV2.2, from proteasomal degradation but not oligo-ubiquitination. J. Biol. Chem. 291, 20402–20416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kadurin, I. et al. Proteolytic maturation of α2δ represents a checkpoint for activation and neuronal trafficking of latent calcium channels. eLife 5, e21143 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Nieto-Rostro, M., Ramgoolam, K., Pratt, W. S., Kulik, A. & Dolphin, A. C. Ablation of α2δ-1 inhibits cell-surface trafficking of endogenous N-type calcium channels in the pain pathway in vivo. Proc. Natl Acad. Sci. USA 115, E12043–E12052 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferron, L., Kadurin, I. & Dolphin, A. C. Proteolytic maturation of α2δ controls the probability of synaptic vesicular release. eLife 7, e37507 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Macabuag, N. & Dolphin, A. C. Alternative splicing in CaV2.2 regulates neuronal trafficking via adaptor protein complex-1 adaptor protein binding motifs. J. Neurosci. 35, 14636–14652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bauer, C. S. et al. The increased trafficking of the calcium channel subunit α2δ-1 to presynaptic terminals in neuropathic pain is inhibited by the α2δ ligand pregabalin. J. Neurosci. 29, 4076–4088 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Doughty, J. M., Barnes-Davies, M., Rusznak, Z., Harasztosi, C. & Forsythe, I. D. Contrasting Ca2+ channel subtypes at cell bodies and synaptic terminals of rat anterioventral cochlear bushy neurones. J. Physiol. 512, 365–376 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bonifacino, J. S. Adaptor proteins involved in polarized sorting. J. Cell Biol. 204, 7–17 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Koike, S. & Jahn, R. SNAREs define targeting specificity of trafficking vesicles by combinatorial interaction with tethering factors. Nat. Commun. 10, 1608 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Binotti, B., Jahn, R. & Chua, J. J. Functions of Rab proteins at presynaptic sites. Cells 5, E7 (2016).

    Article  PubMed  CAS  Google Scholar 

  61. Britt, D. J., Farias, G. G., Guardia, C. M. & Bonifacino, J. S. Mechanisms of polarized organelle distribution in neurons. Front. Cell Neurosci. 10, 88 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Jacobson, C., Schnapp, B. & Banker, G. A. A change in the selective translocation of the kinesin-1 motor domain marks the initial specification of the axon. Neuron 49, 797–804 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Jenkins, B., Decker, H., Bentley, M., Luisi, J. & Banker, G. A novel split kinesin assay identifies motor proteins that interact with distinct vesicle populations. J. Cell Biol. 198, 749–761 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhai, R. G. et al. Assembling the presynaptic active zone: a characterization of an active zone precursor vesicle. Neuron 29, 131–143 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Bell, M. E. et al. Dynamics of nascent and active zone ultrastructure as synapses enlarge during long-term potentiation in mature hippocampus. J. Comp. Neurol. 522, 3861–3884 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schneider, R. et al. Mobility of calcium channels in the presynaptic membrane. Neuron 86, 672–679 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Regus-Leidig, H., Tom, D. S., Specht, D., Meyer, L. & Brandstatter, J. H. Early steps in the assembly of photoreceptor ribbon synapses in the mouse retina: the involvement of precursor spheres. J. Comp. Neurol. 512, 814–824 (2009).

    Article  PubMed  Google Scholar 

  68. Dittman, J. S. & Ryan, T. A. The control of release probability at nerve terminals. Nat. Rev. Neurosci. 20, 177–186 (2019).

    Article  CAS  PubMed  Google Scholar 

  69. Kaeser, P. S. & Regehr, W. G. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 76, 333–363 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Wheeler, D. B., Randall, A. & Tsien, R. W. Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus. J. Neurosci. 16, 2226–2237 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takahashi, T. & Momiyama, A. Different types of calcium channels mediate central synaptic transmission. Nature 366, 156–158 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Iwasaki, S., Momiyama, A., Uchitel, O. D. & Takahashi, T. Developmental changes in calcium channel types mediating central synaptic transmission. J. Neurosci. 20, 59–65 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stephens, G. J., Morris, N. P., Fyffe, R. E. W. & Robertson, B. The Cav2.1/α1A (P/Q-type) voltage-dependent calcium channel mediates inhibitory neurotransmission onto mouse cerebellar Purkinje cells. Eur. J. Neurosci. 13, 1902–1912 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Hefft, S. & Jonas, P. Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron-principal neuron synapse. Nat. Neurosci. 8, 1319–1328 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Li, L., Bischofberger, J. & Jonas, P. Differential gating and recruitment of P/Q-, N-, and R-type Ca2+ channels in hippocampal mossy fiber boutons. J. Neurosci. 27, 13420–13429 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dietrich, D. et al. Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39, 483–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Breustedt, J., Vogt, K. E., Miller, R. J., Nicoll, R. A. & Schmitz, D. α1E-containing Ca2+ channels are involved in synaptic plasticity. Proc. Natl Acad. Sci. USA 100, 12450–12455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ermolyuk, Y. S. et al. Differential triggering of spontaneous glutamate release by P/Q-, N- and R-type Ca2+ channels. Nat. Neurosci. 16, 1754–1763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Carbone, E., Calorio, C. & Vandael, D. H. T-type channel-mediated neurotransmitter release. Pflug. Arch. 466, 677–687 (2014).

    Article  CAS  Google Scholar 

  80. Huang, Z. et al. Presynaptic HCN1 channels regulate CaV3.2 activity and neurotransmission at select cortical synapses. Nat. Neurosci. 14, 478–486 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kopp-Scheinpflug, C., Steinert, J. R. & Forsythe, I. D. Modulation and control of synaptic transmission across the MNTB. Hear. Res. 279, 22–31 (2011).

    Article  PubMed  Google Scholar 

  82. Nakamura, Y. et al. Nanoscale distribution of presynaptic Ca2+ channels and its impact on vesicular release during development. Neuron 85, 145–158 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fedchyshyn, M. J. & Wang, L. Y. Developmental transformation of the release modality at the calyx of Held synapse. J. Neurosci. 25, 4131–4140 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bornschein, G., Eilers, J. & Schmidt, H. Neocortical high probability release sites are formed by distinct Ca2+ channel-to-release sensor topographies during development. Cell Rep. 28, 1410–1418 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Ishikawa, T., Kaneko, M., Shin, H. S. & Takahashi, T. Presynaptic N-type and P/Q-type Ca2+ channels mediating synaptic transmission at the calyx of Held of mice. J. Physiol. 568, 199–209 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Iwasaki, S. & Takahashi, T. Developmental changes in calcium channel types mediating synaptic transmission in rat auditory brainstem. J. Physiol. 509, 419–423 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Eggermann, E., Bucurenciu, I., Goswami, S. P. & Jonas, P. Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nat. Rev. Neurosci. 13, 7–21 (2012).

    Article  CAS  Google Scholar 

  88. Kusch, V. et al. Munc13-3 is required for the developmental localization of Ca2+ channels to active zones and the nanopositioning of Cav2.1 near release sensors. Cell Rep. 22, 1965–1973 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Yang, Y. M. et al. Septins regulate developmental switching from microdomain to nanodomain coupling of Ca2+ influx to neurotransmitter release at a central synapse. Neuron 67, 100–115 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fekete, A. et al. Underpinning heterogeneity in synaptic transmission by presynaptic ensembles of distinct morphological modules. Nat. Commun. 10, 826 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ricoy, U. M. & Frerking, M. E. Distinct roles for Cav2.1-2.3 in activity-dependent synaptic dynamics. J. Neurophysiol. 111, 2404–2413 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Matthews, G. & Fuchs, P. The diverse roles of ribbon synapses in sensory neurotransmission. Nat. Rev. Neurosci. 11, 812–822 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Snellman, J. et al. Acute destruction of the synaptic ribbon reveals a role for the ribbon in vesicle priming. Nat. Neurosci. 14, 1135–1141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Platzer, J. et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102, 89–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Mansergh, F. et al. Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Hum. Mol. Genet. 14, 3035–3046 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Liu, X. et al. Dysregulation of Cav1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2. Channels 7, 514–523 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Neef, J. et al. Quantitative optical nanophysiology of Ca2+ signaling at inner hair cell active zones. Nat. Comm. 9, 290 (2018).

    Article  CAS  Google Scholar 

  98. Katiyar, R. et al. Influence of the β2-subunit of L-type voltage-gated Cav channels on the structural and functional development of photoreceptor ribbon synapses. Invest. Ophthalmol. Vis. Sci. 56, 2312–2324 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Ball, S. L. et al. Role of the β2 subunit of voltage-dependent calcium channels in the retinal outer plexiform layer. Invest. Ophthalmol. Vis. Sci. 43, 1595–1603 (2002).

    PubMed  Google Scholar 

  100. Ben-Johny, M. & Yue, D. T. Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J. Gen. Physiol. 143, 679–692 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang, P. S. et al. Switching of Ca2+-dependent inactivation of Cav1.3 channels by calcium binding proteins of auditory hair cells. J. Neurosci. 26, 10677–10689 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Haeseleer, F. et al. Five members of a novel Ca2+-binding protein (CABP) subfamily with similarity to calmodulin. J. Biol. Chem. 275, 1247–1260 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Yang, T. et al. Expression and localization of CaBP Ca2+ binding proteins in the mouse cochlea. PLoS One 11, e0147495 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Cui, G. et al. Ca2+-binding proteins tune Ca2+-feedback to Cav1.3 channels in mouse auditory hair cells. J. Physiol. 585, 791–803 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Schrauwen, I. et al. A mutation in CABP2, expressed in cochlear hair cells, causes autosomal-recessive hearing impairment. Am. J. Hum. Genet. 91, 636–645 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Picher, M. M. et al. Ca2+-binding protein 2 inhibits Ca2+-channel inactivation in mouse inner hair cells. Proc. Natl Acad. Sci. USA 114, E1717–E1726 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Shen, Y. et al. Alternative splicing of the Cav1.3 channel IQ domain, a molecular switch for Ca2+-dependent inactivation within auditory hair cells. J. Neurosci. 26, 10690–10699 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gebhart, M. et al. Modulation of Cav1.3 Ca2+ channel gating by Rab3 interacting molecule. Mol. Cell Neurosci. 44, 246–259 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Singh, A. et al. C-terminal modulator controls Ca2+-dependent gating of Cav1.4 L-type Ca2+ channels. Nat. Neurosci. 9, 1108–1116 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Wahl-Schott, C. et al. Switching off calcium-dependent inactivation in L-type calcium channels by an autoinhibitory domain. Proc. Natl Acad. Sci. USA 103, 15657–15662 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Williams, B., Haeseleer, F. & Lee, A. Splicing of an automodulatory domain in Cav1.4 Ca2+ channels confers distinct regulation by calmodulin. J. Gen. Physiol. 150, 1676–1687 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tan, G. M., Yu, D., Wang, J. & Soong, T. W. Alternative splicing at C terminus of CaV1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density. J. Biol. Chem. 287, 832–847 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Haeseleer, F. et al. Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nat. Neurosci. 7, 1079–1087 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Haeseleer, F., Williams, B. & Lee, A. Characterization of C-terminal splice variants of Cav1.4 Ca2+ channels in human retina. J. Biol. Chem. 291, 15663–15673 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Han, Y., Kaeser, P. S., Sudhof, T. C. & Schneggenburger, R. RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron 69, 304–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Biederer, T., Kaeser, P. S. & Blanpied, T. A. Transcellular nanoalignment of synaptic function. Neuron 96, 680–696 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kaeser, P. S. et al. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144, 282–295 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kiyonaka, S. et al. RIM1 confers sustained activity and neurotransmitter vesicle anchoring to presynaptic Ca2+ channels. Nat. Neurosci. 10, 691–701 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hirano, M. et al. C-terminal splice variants of P/Q-type Ca2+ channel CaV2.1 alpha1 subunits are differentially regulated by Rab3-interacting molecule proteins. J. Biol. Chem. 292, 9365–9381 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hibino, H. et al. RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca2+ channels. Neuron 34, 411–423 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Acuna, C., Liu, X. & Sudhof, T. C. How to make an active zone: unexpected universal functional redundancy between RIMs and RIM-BPs. Neuron 91, 792–807 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Jung, S. et al. Rab3-interacting molecules 2α and 2β promote the abundance of voltage-gated CaV1.3 Ca2+ channels at hair cell active zones. Proc. Natl Acad. Sci. USA 112, E3141–E3149 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Krinner, S., Butola, T., Jung, S., Wichmann, C. & Moser, T. RIM-binding protein 2 promotes a large number of CaV1.3 Ca2+-channels and contributes to fast synaptic vesicle replenishment at hair cell active zones. Front. Cell Neurosci. 11, 334 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Lubbert, M. et al. A novel region in the CaV2.1 α1 subunit C-terminus regulates fast synaptic vesicle fusion and vesicle docking at the mammalian presynaptic active zone. eLife 6, e28412 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Lu, J., Li, H., Wang, Y., Sudhof, T. C. & Rizo, J. Solution structure of the RIM1alpha PDZ domain in complex with an ELKS1b C-terminal peptide. J. Mol. Biol. 352, 455–466 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Kiyonaka, S. et al. Physical and functional interaction of the active zone protein CAST/ERC2 and the β-subunit of the voltage-dependent Ca2+ channel. J. Biochem. 152, 149–159 (2012).

    Article  CAS  PubMed  Google Scholar 

  127. Liu, C. et al. The active zone protein family ELKS supports Ca2+ influx at nerve terminals of inhibitory hippocampal neurons. J. Neurosci. 34, 12289–12303 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Dong, W. et al. CAST/ELKS proteins control voltage-gated Ca2+ channel density and synaptic release probability at a mammalian central synapse. Cell Rep. 24, 284–293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kittel, R. J. et al. Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312, 1051–1054 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Held, R. G. & Kaeser, P. S. ELKS active zone proteins as multitasking scaffolds for secretion. Open. Biol. 8, 170258 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Hoppa, M. B., Lana, B., Margas, W., Dolphin, A. C. & Ryan, T. A. α2δ expression sets presynaptic calcium channel abundance and release probability. Nature 486, 122–125 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kerov, V. et al. α2δ-4 is required for the molecular and structural organization of rod and cone photoreceptor synapses. J. Neurosci. 38, 6145–6160 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tong, X.-J. et al. Retrograde synaptic inhibition is mediated by α-neurexin binding to the α2δ subunits of N-type calcium channels. Neuron 95, 1–15 (2017).

    Article  CAS  Google Scholar 

  134. Brockhaus, J. et al. alpha-neurexins together with α2δ-1 auxiliary subunits regulate Ca2+ influx through Cav2.1 channels. J. Neurosci. 38, 8277–8294 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Eroglu, C. et al. Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139, 380–392 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. El-Awaad, E. et al. Direct, gabapentin-insensitive interaction of a soluble form of the calcium channel subunit α2δ-1 with thrombospondin-4. Sci. Rep. 9, 16272 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Lana, B. et al. Thrombospondin-4 reduces binding affinity of [3H]-gabapentin to calcium-channel α2δ-1-subunit but does not interact with α2δ-1 on the cell-surface when co-expressed. Sci. Rep. 6, 24531 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Mercer, A. J., Chen, M. & Thoreson, W. B. Lateral mobility of presynaptic L-type calcium channels at photoreceptor ribbon synapses. J. Neurosci. 31, 4397–4406 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Bohme, M. A. et al. Active zone scaffolds differentially accumulate Unc13 isoforms to tune Ca2+ channel-vesicle coupling. Nat. Neurosci. 19, 1311–1320 (2016).

    Article  PubMed  CAS  Google Scholar 

  140. Kawabe, H. et al. ELKS1 localizes the synaptic vesicle priming protein bMunc13-2 to a specific subset of active zones. J. Cell Biol. 216, 1143–1161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Sakamoto, H. et al. Synaptic weight set by Munc13-1 supramolecular assemblies. Nat. Neurosci. 21, 41–49 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Bello, O. D. et al. Synaptotagmin oligomerization is essential for calcium control of regulated exocytosis. Proc. Natl Acad. Sci. USA 115, E7624–E7631 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zamponi, G. W. Regulation of presynaptic calcium channels by synaptic proteins. J. Pharmacol. Sci. 92, 79–83 (2003).

    Article  CAS  PubMed  Google Scholar 

  144. Mochida, S., Sheng, Z. H., Baker, C., Kobayashi, H. & Catterall, W. A. Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 17, 781–788 (1996).

    Article  CAS  PubMed  Google Scholar 

  145. Keith, R. K., Poage, R. E., Yokoyama, C. T., Catterall, W. A. & Meriney, S. D. Bidirectional modulation of transmitter release by calcium channel/syntaxin interactions in vivo. J. Neurosci. 27, 265–269 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Spafford, J. D. et al. Calcium channel structural determinants of synaptic transmission between identified invertebrate neurons. J. Biol. Chem. 278, 4258–4267 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Watanabe, H. et al. Involvement of Ca2+ channel synprint site in synaptic vesicle endocytosis. J. Neurosci. 30, 655–660 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Heck, J. et al. Transient Confinement of CaV2.1 Ca2+-channel splice variants shapes synaptic short-term plasticity. Neuron 103, 66–79 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Uriu, Y. et al. Rab3-interacting molecule gamma isoforms lacking the Rab3-binding domain induce long lasting currents but block neurotransmitter vesicle anchoring in voltage-dependent P/Q-type Ca2+ channels. J. Biol. Chem. 285, 21750–21767 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kaeser, P. S., Deng, L., Fan, M. & Sudhof, T. C. RIM genes differentially contribute to organizing presynaptic release sites. Proc. Natl Acad. Sci. USA 109, 11830–11835 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Grabner, C. P. et al. RIM1/2-mediated facilitation of Cav1.4 channel opening is required for Ca2+-stimulated release in mouse rod photoreceptors. J. Neurosci. 35, 13133–13147 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dolphin, A. C. G protein modulation of voltage-gated calcium channels. Pharmacol. Rev. 55, 607–627 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Holz, G. G. I., Rane, S. G. & Dunlap, K. GTP-binding proteins mediate transmitter inhibition of voltage- dependent calcium channels. Nature 319, 670–672 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Dolphin, A. C., Forda, S. R. & Scott, R. H. Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. J. Physiol. 373, 47–61 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Herlitze, S. et al. Modulation of Ca2+ channels by G-protein βγ subunits. Nature 380, 258–262 (1996).

    Article  CAS  PubMed  Google Scholar 

  156. Ikeda, S. R. Voltage-dependent modulation of N-type calcium channels by G protein βγ subunits. Nature 380, 255–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  157. Kajikawa, Y., Saitoh, N. & Takahashi, T. GTP-binding protein βγ subunits mediate presynaptic calcium current inhibition by GABAB receptor. Proc. Natl Acad. Sci. USA 98, 8054–8058 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zamponi, G. W. & Snutch, T. P. Decay of prepulse facilitation of N type calcium channels during G protein inhibition is consistent with binding of a single Gβγ subunit. Proc. Natl Acad. Sci. USA 95, 4035–4039 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Meir, A., Bell, D. C., Stephens, G. J., Page, K. M. & Dolphin, A. C. Calcium channel β subunit promotes voltage-dependent modulation of α1B by Gβγ. Biophy. J. 79, 731–746 (2000).

    Article  CAS  Google Scholar 

  160. Zhang, Y. et al. Origin of the voltage dependence of G-protein regulation of P/Q-type Ca2+ channels. J. Neurosci. 28, 14176–14188 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Van Petegem, F., Clark, K. A., Chatelain, F. C. & Minor, D. L. Jr. Structure of a complex between a voltage-gated calcium channel β-subunit and an α-subunit domain. Nature 429, 671–675 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Page, K. M., Canti, C., Stephens, G. J., Berrow, N. S. & Dolphin, A. C. Identification of the amino terminus of neuronal Ca2+ channel α1 subunits α1B and α1E as an essential determinant of G protein modulation. J. Neurosci. 18, 4815–4824 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Jia, J. Y. et al. Quantitative proteomics analysis of detergent-resistant membranes from chemical synapses: evidence for cholesterol as spatial organizer of synaptic vesicle cycling. Mol. Cell Proteom. 5, 2060–2071 (2006).

    Article  CAS  Google Scholar 

  164. Davies, A. et al. The calcium channel α2δ-2 subunit partitions with CaV2.1 in lipid rafts in cerebellum: implications for localization and function. J. Neurosci. 26, 8748–8757 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. de Jong, A. P. H. et al. RIM C2B domains target presynaptic active zone functions to PIP2-containing membranes. Neuron 98, 335–349 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Lauwers, E., Goodchild, R. & Verstreken, P. Membrane lipids in presynaptic function and disease. Neuron 90, 11–25 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Walter, A. M. et al. Phosphatidylinositol 4,5-bisphosphate optical uncaging potentiates exocytosis. eLife 6, e30203 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Taoufiq, Z., Eguchi, K. & Takahashi, T. Rho-kinase accelerates synaptic vesicle endocytosis by linking cyclic GMP-dependent protein kinase activity to phosphatidylinositol-4,5-bisphosphate synthesis. J. Neurosci. 33, 12099–12104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rodriguez-Menchaca, A. A., Adney, S. K., Zhou, L. & Logothetis, D. E. Dual regulation of voltage-sensitive Ion channels by PIP2. Front. Pharmacol. 3, 170 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hille, B., Dickson, E. J., Kruse, M., Vivas, O. & Suh, B. C. Phosphoinositides regulate ion channels. Biochim. Biophys. Acta 1851, 844–856 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Zhu, Y. & Ikeda, S. R. Modulation of Ca2+-channel currents by protein kinase C in adult rat sympathetic neurons. J. Neurophysiol. 72, 1549–1560 (1994).

    Article  CAS  PubMed  Google Scholar 

  172. Hamid, J. et al. Identification of an integration center for cross-talk between protein kinase C and G protein modulation of N type calcium channels. J. Biol. Chem. 274, 6195–6202 (1999).

    Article  CAS  PubMed  Google Scholar 

  173. Martin, R., Bartolome-Martin, D., Torres, M. & Sanchez-Prieto, J. Non-additive potentiation of glutamate release by phorbol esters and metabotropic mGlu7 receptor in cerebrocortical nerve terminals. J. Neurochem. 116, 476–485 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Groten, C. J. & Magoski, N. S. PKC enhances the capacity for secretion by rapidly recruiting covert voltage-gated Ca2+ channels to the membrane. J. Neurosci. 35, 2747–2765 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Tomizawa, K. et al. Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J. Neurosci. 22, 2590–2597 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yan, Z., Chi, P., Bibb, J. A., Ryan, T. A. & Greengard, P. Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons. J. Physiol. 540, 761–770 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Buraei, Z. & Elmslie, K. S. The separation of antagonist from agonist effects of trisubstituted purines on CaV2.2 (N-type) channels. J. Neurochem. 105, 1450–1461 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Su, S. C. et al. Regulation of N-type voltage-gated calcium channels and presynaptic function by cyclin-dependent kinase 5. Neuron 75, 675–687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Kim, S. H. & Ryan, T. A. Balance of calcineurin Aα and CDK5 activities sets release probability at nerve terminals. J. Neurosci. 33, 8937–8950 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Dolphin, A. C. β subunits of voltage-gated calcium channels. J. Bioeng. Biomemb 35, 599–620 (2003).

    Article  CAS  Google Scholar 

  181. Liu, G. et al. Mechanism of adrenergic CaV1.2 stimulation revealed by proximity proteomics. Nat. 577, 695–700 (2020).

    Article  CAS  Google Scholar 

  182. Lee, A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  183. DeMaria, C. D., Soong, T. W., Alseikhan, B. A., Alvania, R. S. & Yue, D. T. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q- type Ca2+ channels. Nature 411, 484–489 (2001).

    Article  CAS  PubMed  Google Scholar 

  184. Nanou, E. & Catterall, W. A. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron 98, 466–481 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Weyrer, C. et al. The role of CaV2.1 channel facilitation in synaptic facilitation. Cell Rep. 26, 2289–2297 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lee, A. et al. Differential modulation of Cav2.1 channels by calmodulin and Ca2+-binding protein 1. Nat. Neurosci. 5, 210–217 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Nanou, E., Lee, A. & Catterall, W. A. Control of excitation/inhibition balance in a hippocampal circuit by calcium sensor protein regulation of presynaptic calcium channels. J. Neurosci. 38, 4430–4440 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liang, H. et al. Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39, 951–960 (2003).

    Article  CAS  PubMed  Google Scholar 

  189. Thomas, J. R., Hagen, J., Soh, D. & Lee, A. Molecular moieties masking Ca2+-dependent facilitation of voltage-gated Cav2.2 Ca2+ channels. J. Gen. Physiol. 150, 83–94 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pietrobon, D. CaV2.1 channelopathies. Pflug. Arch. 460, 375–393 (2010).

    Article  CAS  Google Scholar 

  191. Tottene, A. et al. Enhanced excitatory transmission at cortical synapses as the basis for facilitated spreading depression in Cav2.1 knockin migraine mice. Neuron 61, 762–773 (2009).

    Article  CAS  PubMed  Google Scholar 

  192. Vecchia, D., Tottene, A., van den Maagdenberg, A. M. & Pietrobon, D. Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans. Front. Cell Neurosci. 9, 8 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Di Guilmi, M. N. et al. Synaptic gain-of-function effects of mutant Cav2.1 channels in a mouse model of familial hemiplegic migraine are due to increased basal [Ca2+]i. J. Neurosci. 34, 7047–7058 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Vecchia, D., Tottene, A., van den Maagdenberg, A. M. & Pietrobon, D. Mechanism underlying unaltered cortical inhibitory synaptic transmission in contrast with enhanced excitatory transmission in CaV2.1 knockin migraine mice. Neurobiol. Dis. 69, 225–234 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Adams, P. J. et al. CaV2.1 P/Q-type calcium channel alternative splicing affects the functional impact of familial hemiplegic migraine mutations: implications for calcium channelopathies. Channels 3, 110–121 (2009).

    Article  CAS  PubMed  Google Scholar 

  196. Mullner, C., Broos, L. A., Van den Maagdenberg, A. M. & Striessnig, J. Familial hemiplegic migraine type 1 mutations K1336E, W1684R, and V1696I alter Cav2.1 Ca2+ channel gating: evidence for beta-subunit isoform-specific effects. J. Biol. Chem. 279, 51844–51850 (2004).

    Article  PubMed  CAS  Google Scholar 

  197. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

    Article  PubMed Central  CAS  Google Scholar 

  198. Takada, Y. et al. Rab3 interacting molecule 3 mutations associated with autism alter regulation of voltage-dependent Ca2+ channels. Cell Calcium 58, 296–306 (2015).

    Article  CAS  PubMed  Google Scholar 

  199. Beguin, P. et al. BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis. J. Cell Biol. 205, 233–249 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Nakao, A. et al. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice. Front. Behav. Neurosci. 9, 141 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Bassell, G. J. & Warren, S. T. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60, 201–214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ferron, L., Nieto-Rostro, M., Cassidy, J. S. & Dolphin, A. C. Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density. Nat. Commun. 5, 3628 (2014).

    Article  PubMed  CAS  Google Scholar 

  203. Ferron, L. et al. FMRP regulates presynaptic localization of neuronal voltage gated calcium channels. Neurobiol. Dis. 138, 104779 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Zeitz, C. et al. Mutations in CABP4, the gene encoding the Ca2+-binding protein 4, cause autosomal recessive night blindness. Am. J. Hum. Genet. 79, 657–667 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Shaltiel, L. et al. Complex regulation of voltage-dependent activation and inactivation properties of retinal voltage-gated Cav1.4 L-type Ca2+ channels by Ca2+-binding protein 4 (CaBP4). J. Biol. Chem. 287, 36312–36321 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Miki, T. et al. Numbers of presynaptic Ca2+ channel clusters match those of functionally defined vesicular docking sites in single central synapses. Proc. Natl Acad. Sci. USA 114, E5246–E5255 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ohn, T. L. et al. Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes. Proc. Natl Acad. Sci. USA 113, E4716–E4725 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 1080–1090 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wang, Y. Z. & Savas, J. N. Uncovering discrete synaptic proteomes to understand neurological disorders. Proteomes 6, E30 (2018).

    Article  PubMed  CAS  Google Scholar 

  210. Shields, B. C. et al. Deconstructing behavioral neuropharmacology with cellular specificity. Science 356, eaaj2161 (2017).

    Article  PubMed  CAS  Google Scholar 

  211. Sigal, Y. M., Zhou, R. & Zhuang, X. Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880–887 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Heuser, J. E. & Reese, T. S. Structural changes after transmitter release at the frog neuromuscular junction. J. Cell Biol. 88, 564–580 (1981).

    Article  CAS  PubMed  Google Scholar 

  213. Harlow, M. L., Ress, D., Stoschek, A., Marshall, R. M. & McMahan, U. J. The architecture of active zone material at the frog’s neuromuscular junction. Nature 409, 479–484 (2001).

    Article  CAS  PubMed  Google Scholar 

  214. Parajuli, L. K. et al. Quantitative regional and ultrastructural localization of the Cav2.3 subunit of R-type calcium channel in mouse brain. J. Neurosci. 32, 13555–13567 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Borst, J. G. G. & Sakmann, B. Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J. Physiol. 506, 143–157 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Stanley, E. F. Calcium currents in a vertebrate presynaptic nerve terminal: the chick ciliary ganglion calyx. Brain Res. 505, 341–345 (1989).

    Article  CAS  PubMed  Google Scholar 

  217. Takahashi, T., Forsythe, I. D., Tsujimoto, T., Barnes-Davies, M. & Onodera, K. Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274, 594–597 (1996).

    Article  CAS  PubMed  Google Scholar 

  218. Bischofberger, J., Geiger, J. R. & Jonas, P. Timing and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons. J. Neurosci. 22, 10593–10602 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Inchauspe, C. G., Martini, F. J., Forsythe, I. D. & Uchitel, O. D. Functional compensation of P/Q by N-type channels blocks short-term plasticity at the calyx of held presynaptic terminal. J. Neurosci. 24, 10379–10383 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32, 13819–13840 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Sabatini, B. L. & Regehr, W. G. Optical measurement of presynaptic calcium currents. Biophy. J. 74, 1549–1563 (1998).

    Article  CAS  Google Scholar 

  222. Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  CAS  PubMed  Google Scholar 

  223. Wang, C. & Zucker, R. S. Regulation of synaptic vesicle recycling by calcium and serotonin. Neuron 21, 155–167 (1998).

    Article  CAS  PubMed  Google Scholar 

  224. Allen, T. G. The ‘sniffer-patch’ technique for detection of neurotransmitter release. Trends Neurosci. 20, 192–197 (1997).

    Article  CAS  PubMed  Google Scholar 

  225. Hires, S. A., Zhu, Y. & Tsien, R. Y. Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc. Natl Acad. Sci. USA 105, 4411–4416 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Stanley, E. F. Single calcium channels and acetylcholine release at a presynaptic nerve terminal. Neuron 11, 1007–1011 (1993).

    Article  CAS  PubMed  Google Scholar 

  228. Scimemi, A. & Diamond, J. S. The number and organization of Ca2+ channels in the active zone shapes neurotransmitter release from Schaffer collateral synapses. J. Neurosci. 32, 18157–18176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Bucurenciu, I., Bischofberger, J. & Jonas, P. A small number of open Ca2+ channels trigger transmitter release at a central GABAergic synapse. Nat. Neurosci. 13, 19–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  230. Borst, J. G. & Sakmann, B. Calcium influx and transmitter release in a fast CNS synapse. Nature 383, 431–434 (1996).

    Article  CAS  PubMed  Google Scholar 

  231. Cao, Y. Q. et al. Presynaptic Ca2+ channels compete for channel type-preferring slots in altered neurotransmission arising from Ca2+ channelopathy. Neuron 43, 387–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  232. Lubbert, M. et al. CaV2.1 alpha1 subunit expression regulates presynaptic CaV2.1 abundance and synaptic strength at a central synapse. Neuron 101, 260–273 (2019).

    Article  CAS  PubMed  Google Scholar 

  233. Liu, K. S. et al. RIM-binding protein, a central part of the active zone, is essential for neurotransmitter release. Science 334, 1565–1569 (2011).

    Article  CAS  PubMed  Google Scholar 

  234. Engel, A. G. Review of evidence for loss of motor nerve terminal calcium channels in Lambert-Eaton myasthenic syndrome. Ann. NY Acad. Sci. 635, 246–258 (1991).

    Article  CAS  PubMed  Google Scholar 

  235. Tran-Van-Minh, A. & Dolphin, A. C. The α2δ ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit α2δ-2. J. Neurosci. 30, 12856–12867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Farias, G. G., Guardia, C. M., Britt, D. J., Guo, X. & Bonifacino, J. S. Sorting of dendritic and axonal vesicles at the pre-axonal exclusion zone. Cell Rep. 13, 1221–1232 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Guedes-Dias, P. et al. Kinesin-3 responds to local microtubule dynamics to target synaptic cargo delivery to the presynapse. Curr. Biol. 29, 268–282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Cooper, C. B. et al. Cross-talk between G-protein and protein kinase C modulation of N-type calcium channels is dependent on the G-protein beta subunit isoform. J. Biol. Chem. 275, 40777–40781 (2000).

    Article  CAS  PubMed  Google Scholar 

  239. Rebola, N. et al. Distinct nanoscale calcium channel and synaptic vesicle topographies contribute to the diversity of synaptic function. Neuron 104, 693–710 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Wellcome Trust Investigator award (206279/Z/17/Z) to A.C.D. and US National Institutes of Heath grants NS084190, DC009433 and EY026817 to A.L.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Annette C. Dolphin or Amy Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks D. Lipscombe, T. Takahashi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Auxiliary subunits

Subunits that modify the activity and/or trafficking of the pore-forming subunit.

Alternative splicing

The process in which certain exons are included or excluded to produce multiple different mRNAs from a single gene.

Activation voltages

The membrane potentials at which a channel's open probability increases, which can be quantified in terms of the voltage for half-maximal activation.

Channel pore

The ion conduction pathway of a channel.

Selectivity filter

The part of the channel pore that restricts passage of particular ions, for example for Ca2+ ions within a voltage-gated Ca2+ channel.

Ribbon synapses

Synapses characterized by a synaptic ribbon that is specialized for the transmission of sensory information.

Calmodulin

A multifunctional Ca2+-sensing protein found in all eukaryotic cells.

Soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) proteins

Members of a protein complex that mediates the fusion of vesicles with another membrane, for example the plasma membrane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolphin, A.C., Lee, A. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat Rev Neurosci 21, 213–229 (2020). https://doi.org/10.1038/s41583-020-0278-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-0278-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing