Skip to main content

Advertisement

Log in

Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models

  • Nanotoxicology
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Amorphous silica nanoparticles are widely used as pharmaceutical excipients and food additive (E551). Despite the potential human health risks of mineral nanoparticles, very few data regarding their oral toxicity are currently available. This study aims to evaluate and to understand the interactions of silica particles at 1 and 10 mg mL−1 with the intestinal barrier using a Caco-2 monolayer and a Caco-2/HT29-MTX co-culture. A size- and concentration-dependent reversible increase of the paracellular permeability is identified after a short-term exposure to silica nanoparticles. Nanoparticles of 30 nm induce the highest transepithelial electrical resistance drop whereas no effect is observed with 200 nm particles. Additive E551 affect the Caco-2 monolayer permeability. Mucus layer reduces the permeability modulation by limiting the cellular uptake of silica. After nanoparticle exposure, tight junction expression including Zonula occludens 1 (ZO-1) and Claudin 2 is not affected, whereas the actin cytoskeleton disruption of enterocytes and the widening of ZO-1 staining bands are observed. A complete permeability recovery is concomitant with the de novo filament actin assembly and the reduction of ZO-1 bands. These findings suggest the paracellular modulation by small silica particles is directly correlated to the alteration of the ZO-actin binding strongly involved in the stability of the tight junction network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

Download references

Acknowledgements

Raphaël Cornu is supported by a fellowship from the “Communauté d’Agglomération du Grand Besançon (CAGB)”. We thank DImaCell microscopy facilities, especially M. Tissot for her technical assistance (Plateforme DImaCell, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France). The authors thank FHU InCREASe for the Oral Communication Award and the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Béduneau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornu, R., Chrétien, C., Pellequer, Y. et al. Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models. Arch Toxicol 94, 1191–1202 (2020). https://doi.org/10.1007/s00204-020-02694-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-020-02694-6

Keywords

Navigation