Skip to main content
Log in

Highly sensitive electrochemiluminescence biosensor for VEGF165 detection based on a g-C3N4/PDDA/CdSe nanocomposite

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this work, an electrochemiluminescence (ECL) biosensor was fabricated for the selective detection of vascular endothelial growth factor (VEGF165). g-C3N4/PDDA/CdSe nanocomposites were used as the ECL substrate. Then, DNA labeled at the 5′ end with amino groups (DNA1) was immobilized on the surface of g-C3N4/PDDA/CdSe nanocomposite-modified glassy carbon electrode (GCE) by amido linkage. AuNP-labeled target DNA (Au-DNA2) could hybridize with DNA1 to form a double strand. The ECL of the g-C3N4/PDDA/CdSe nanocomposite was efficiently quenched due to the resonance energy transfer between CdSe QDs and Au NPs. After VEGF165 was recognized and bound by Au-DNA2, the double helix was disrupted, and the energy transfer was broken. In this case, Au-DNA2 was released from the electrode surface, and the ECL intensity recovered to a higher level. Under optimal conditions, this ECL biosensor possesses excellent selectivity, accuracy, and stability for VEGF165 detection in a linear range of 2 pg mL−1 to 2 ng mL−1 with a detection limit of 0.68 pg mL−1. In addition, this assay has been successfully applied to the determination of VEGF165 in serum samples.

Schematic representation of the electrochemiluminescence sensor based on a g-C3N4/PDDA/CdSe nanocomposite, which can be determined in the concentration of vascular endothelial growth factor in serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Senger DR, Galli SJ, Dvorak AM, Perruzzi C, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Sci. 1983;21:9983–5.

    Google Scholar 

  2. Keck PJ, Hauser SD, Krivi GG, Sanzo K, Warren T, Feder J, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Sci. 1989;246:9–12.

    Article  Google Scholar 

  3. Ahmetov II, Williams AG, Popov DV, Lyubaeva EV, Hakimullina AM, Fedotovskaya ON, et al. Hum Genet. 2009;12:126–751.

    Google Scholar 

  4. Aiello LP, Pierce EA, Foley E, Takagi H, Chen HH, Riddle L, et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. P Natl Acad Sci USA. 1995;92:10457–61.

    Article  CAS  Google Scholar 

  5. Omar AR. Targeting vascular endothelial growth factor (VEGF) pathway in gastric cancer: preclinical and clinical aspects. Crit Rev Oncol Hematol. 2015;93:18–27.

    Article  Google Scholar 

  6. Do DV, Nguyen QD, Vitti R, Berliner AJ, Gibson A, Saroj N, et al. Intravitreal aflibercept injection in diabetic macular edema patients with and without prior anti-vascular endothelial growth factor treatment. OpHth. 2016;123:850–7.

    Article  Google Scholar 

  7. Nakahara H, Song J, Sugimoto M, Hagihara K, Kishimoto T, Yoshizaki K, et al. Anti–interleukin-6 receptor antibody therapy reduces vascular endothelial growth factor production in rheumatoid arthritis. Arthritis Rheum. 2003;8:1521–9.

    Article  Google Scholar 

  8. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nat. 1992;359:845–8.

    Article  CAS  Google Scholar 

  9. Slawomir L, Grazyna E B, Ewa G S, Maciej S, The plasma concentration of VEGF, HE4 and CA125 as a new biomarkers panel in different stages and sub-types of epithelial ovarian tumors.

  10. Salven P, Orpana A, Joensuu H. Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. ACCR. 1995;5:487–91.

    Google Scholar 

  11. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nat. 2000;407:249–57.

    Article  CAS  Google Scholar 

  12. Detmar M. Evidence for vascular endothelial growth factor (VEGF) as a modifier gene in psoriasis. J Invest Dermatol. 2004;122.

  13. Storkebaum E, Lambrechts D, Carmeliet P. VEGF: once regarded as a specific angiogenic factor, now implicated in neuroprotection. BioEssays. 2004;26:943–54.

    Article  CAS  Google Scholar 

  14. Tsai M, Wang T, Lin Y, Kuo P, Su YH, Huang H. Aryl hydrocarbon receptor agonists upregulate VEGF secretion from bronchial epithelial cells. J Mol Med. 2015;93:1257–69.

    Article  CAS  Google Scholar 

  15. Li JL, Sun KX, Chen ZP, Shi JF, Zhou DD, Xie GM. A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification. Biosens Bioelectron. 2017;89:964–9.

    Article  CAS  Google Scholar 

  16. Iliuk A, Hu LH, Tao A. Aptamer in bioanalytical applications. Anal Chem. 2011;83:4440–52.

    Article  CAS  Google Scholar 

  17. Liu HY, Xu SM, He ZM, Deng AP, Zhu JJ. Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes. Anal Chem. 2013;85:3385–92.

    Article  CAS  Google Scholar 

  18. Peng L, Wu CCS, You MX, Han D, Chen Y, Fu T, et al. Engineering and applications of DNA-grafted polymer materials. Chem Sci. 2013;4:1928–38.

    Article  CAS  Google Scholar 

  19. Yang XJ, Liu X, Liu Z, Pu F, Ren JS, Qu XG. Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles. Adv Mater. 2012;24:2890–5.

    Article  CAS  Google Scholar 

  20. Zhao J, He XL, Bo B, Liu XJ, Yin YM, Li GX. A signal-on electrochemical aptasensor for simultaneous detection of two tumor markers. Biosens Bioelectron. 2012;34:249–52.

    Article  CAS  Google Scholar 

  21. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Sci. 1990;249:505–10.

    Article  CAS  Google Scholar 

  22. Cho EJ, Lee JW, Ellington AD. Applications of aptamers as sensors. Rev Anal Chem. 2009;2:241–64.

    Article  CAS  Google Scholar 

  23. Hianik T, Wang J. Electrochemical aptasensors - recent achievements and perspectives. Electroanaly. 2009;21:1223–35.

    Article  CAS  Google Scholar 

  24. Song SP, Wang LH, Li J, Zhao JL, Fan CH. Aptamer-based biosensors. Anal Chem. 2008;27:108–17.

    CAS  Google Scholar 

  25. Suzuki Y, Yokoyama K. Development of a fluorescent peptide for the detection of vascular endothelial growth factor (VEGF). Bioconjug Chem. 2009;10:1793–5.

    CAS  Google Scholar 

  26. Scapini P, Calzetti F, Cassatella MA. On the detection of neutrophil-derived vascular endothelial growth factor VEGF. J Immunol Methods. 1999;232:121–9.

    Article  CAS  Google Scholar 

  27. Zhou H, Yue H, Zhou YL, Wang L, Fu ZF. A novel disposable immunosensor based on quenching of electrochemiluminescence emission of Ru(bpy)32+ by amorphous carbon nanoparticles. Sensors Actuators B Chem. 2015;209:744–50.

    Article  CAS  Google Scholar 

  28. Chen Z, Ma G, Chen ZH, Zhang YG, Zhang Z, Gao JW, et al. Fabrication and photoelectrochemical properties of silicon nanowires/g-C3N4 Core/shell arrays. Appl Surf Sci. 2017;396:609–15.

    Article  CAS  Google Scholar 

  29. Li RY, Zhang Y, Tu WW, Dai ZH. A photoelectrochemical bioanalysis platform for cells monitoring based on dual signal amplification using in situ generation of electron acceptor coupled with heterojunction. ACS. 2017;9:22289–97.

    CAS  Google Scholar 

  30. Wang HY, Zhang QH, Yin HS, Wang MH, Jiang WJ, Ai SY. A photoelectrochemical immunosensor for methylated RNA detection based on g-C3N4/CdS quantum dots heterojunction and Phos-tag-biotin. Biosens Bioelectron. 2017;95:124–30.

    Article  CAS  Google Scholar 

  31. Zhang H, Li MX, Li CH, Guo ZH, Dong HL, Wu P, et al. G-Quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: combination of aptamer–target recognition and T7 exonuclease-assisted cycling signal amplification. Biosens Bioelectron. 2015;74:98–103.

    Article  CAS  Google Scholar 

  32. Pang XH, Bian HJ, Wang WJ, Liu C, Khan MS, Wang Q, et al. A bio-chemical application of N-GQDs and g-C3N4 QDs sensitized TiO2 nanopillars for the quantitative detection of pcDNA3-HBV. Biosens Bioelectron. 2017;91:456–64.

    Article  CAS  Google Scholar 

  33. Zhao M, Fan GC, Chen JJ, Shi JJ, Zhu JJ. Highly sensitive and selective photoelectrochemical biosensor for Hg2+ detection based on dual signal amplification by exciton energy transfer coupled with sensitization effect. Anal Chem. 2015;87:12340–7.

    Article  CAS  Google Scholar 

  34. Zhang XR, Li SG, Jin X, Li XM. Aptamer based photoelectrochemical cytosensor with layer-by-layer assembly of CdSe semiconductor nanoparticles as photoelectrochemically active species. Biosens Bioelectron. 2011;26:3674–8.

    Article  CAS  Google Scholar 

  35. Jie GF, Chen K, Wang XC, Lu ZK. Dual-stabilizer-capped CdSe quantum dots for off-on electrochemiluminescence biosensing of thrombin by target-triggered multiple amplification. RSC Adv. 2016;6:2065–71.

    Article  CAS  Google Scholar 

  36. Du XL, Kang TF, Lu LP, Cheng SY. An electrochemiluminescence sensor based on CdSe@CdS functionalized MoS2 and hemin/Gquadruplex-based DNAzyme biocatalytic precipitation for sensitive detection of Pb(II). Anal Methods. 2018:51–8.

  37. Kopra K, Syrjanp M, Hanninen P, Harma H. Non-competitive aptamer-based quenching resonance energy transfer assay for homogeneous growth factor quantification. Analyst. 2014;139:2016–23.

    Article  CAS  Google Scholar 

  38. bMita C, bAbeK, Fukaya T, Ikebukuro K. Vascular endothelial growth factor (VEGF) detection using an aptamer and PNA-based bound/free separation system, Materials. Mater. 2014;7:1046–54.

    Article  Google Scholar 

  39. Wang SE, Huang Y, Hu K, Tian JN, Zhao SL. A highly sensitive and selective aptasensor based on fluorescence polarization for the rapid determination of oncoprotein vascular endothelial growth factor (VEGF). Anal Methods. 2014;6:62–6.

    Article  CAS  Google Scholar 

  40. Nonaka Y, Abe K, Ikebukuro K. Electrochemical detection of vascular endothelial growth factor with aptamer sandwich. Electrochem. 2012;80:363–6.

    Article  CAS  Google Scholar 

  41. Zhao J, He XL, Bo B, Liu XJ, Yin YM, Li GX. A “signal-on” electrochemical aptasensor for simultaneous detection of two tumor markers. Biosens Bioelectron. 2012;34:249–52.

    Article  CAS  Google Scholar 

  42. Abe K, Hasegawa H, Ikebukuro K. Electrochemical detection of vascular endothelial growth factor by an aptamer-based bound/free separation system. Electrochem. 2012;80:348–52.

    Article  CAS  Google Scholar 

  43. Du XL, Lu LP, Cheng SY. An electrochemiluminescence sensor based on CdSe@CdS functionalized MoS2 and hemin/Gquadruplex-based DNAzyme biocatalytic precipitation for sensitive detection of Pb(II). Anal Methods. 2018:10–51.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21575001, 21976001), the Natural Science Foundation of Anhui Province (1508085MB37), and the Open fund for Discipline Construction of Institute of Physical Science and Information Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-jie Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Ethical approval

The protocol of this study was approved by the medical ethics committee of The First Affiliated Hospital of Anhui Medical University. The blood samples (2 mL) of the participants were collected after informed written consent was provided by the subjects.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Jl., Liu, XP., Chen, JS. et al. Highly sensitive electrochemiluminescence biosensor for VEGF165 detection based on a g-C3N4/PDDA/CdSe nanocomposite. Anal Bioanal Chem 412, 3073–3081 (2020). https://doi.org/10.1007/s00216-020-02552-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02552-5

Keywords

Navigation