Skip to main content

Advertisement

Log in

Doped Graphitic Carbon Nitride: Insights from Spectroscopy and Electrochemistry

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Photocatalytic use of the neat graphitic carbon nitride, g-C3N4, is usually restricted by unsatisfactory efficiency due to low solar light absorption and rapid recombination of photogenerated charge carriers. The introduction of metal ions into g-C3N4 structure can effectively reduce the recombination rate of photogenerated charges, expand the light absorption range and in consequence improve overall photocatalytic efficiency. The series of graphitic carbon nitride based materials, doped with metals cations (iron, bismuth, cobalt, zinc), has been prepared. The doping-caused changes of band gap energy, flat band potential, photocurrent generation, and photoactivity range have been studied using spectroscopic and electrochemical techniques. Moreover, based on the photocatalytic activity tests the efficiency of change recombination has been estimated. Presented studies proved multifarious positive effects of doping on g-C3N4, such as extended light absorption, an improved yield of electron–hole pairs separation, suppressed recombination of charge carriers, reduced electron transport resistance, and improved photocatalytic efficiency of dye decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Augugliaro, G. Camera-Roda, V. Loddo, G. Palmisano, L. Palmisano, J. Soria, S. Yurdakal, Heterogeneous photocatalysis and photoelectrocatalysis: from unselective abatement of noxious species to selective production of high-value chemicals. J. Phys. Chem. Lett. 6, 1968–1981 (2015). https://doi.org/10.1021/acs.jpclett.5b00294

    Article  CAS  PubMed  Google Scholar 

  2. A. Mittal, B. Mari, S. Sharma, V. Kumari, S. Maken, K. Kumari, N. Kumar, Non-metal modified TiO2: a step towards visible light photocatalysis. J. Mater. Sci. 30, 3186–3207 (2019). https://doi.org/10.1007/s10854-018-00651-9

    Article  CAS  Google Scholar 

  3. S. Wojtyła, T. Baran, Photosensitization and photocurrent switching effects in wide band gap semiconductors: CuI and TiO2 functionalized with iron and nickel complexes: from semiconductors to logic devices. J. Inorg. Organomet. Polym. 27, 436–445 (2017). https://doi.org/10.1007/s10904-016-0484-6

    Article  CAS  Google Scholar 

  4. S. Wojtyła, W. Macyk, T. Baran, Photosensitization of CuI—the role of visible light induced CuI → CuII transition in photocatalytic degradation of organic pollutants and inactivation of microorganisms. Photochem. Photobiol. Sci. 16, 1079–1087 (2017). https://doi.org/10.1039/C6PP00465B

    Article  PubMed  Google Scholar 

  5. S.A. Mansour, A.H. Farha, M.F. Kotkata, Sol–gel synthesized Co-doped anatase TiO2 nanoparticles: structural, optical, and magnetic characterization. J. Inorg. Organomet. Polym. 29, 1375–1382 (2019). https://doi.org/10.1007/s10904-019-01102-6

    Article  CAS  Google Scholar 

  6. M. Buchalska, J. Kuncewicz, E. Świętek, P. Łabuz, T. Baran, G. Stochel, W. Macyk, Photoinduced hole injection in semiconductor-coordination compound systems. Coord. Chem. Rev. 257, 767–775 (2013). https://doi.org/10.1016/j.ccr.2012.09.017

    Article  CAS  Google Scholar 

  7. A. Dumbrava, D. Berger, C. Matei, G. Prodan, F. Aonofriesei, M.D. Radu, F. Moscalu, New composite nanomaterials with antimicrobial and photocatalytic properties based on silver and zinc oxide. J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01166-4

    Article  Google Scholar 

  8. E. Kowalska, Z. Wei, M. Janczarek, Band-gap engineering of photocatalysts: surface modification versus doping, in Visible Light-Active Photocatalysis, ed. by S. Ghosh (Wiley, Washington, 2018), pp. 447–484. https://doi.org/10.1002/9783527808175.ch16

    Chapter  Google Scholar 

  9. K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym. 29, 203–212 (2019). https://doi.org/10.1007/s10904-018-0979-4

    Article  CAS  Google Scholar 

  10. M.V. Dozzi, E. Selli, Doping TiO2 with p-block elements: effects on photocatalytic activity. J. Photochem. Photobiol. C 14, 13–28 (2013). https://doi.org/10.1016/j.jphotochemrev.2012.09.002

    Article  CAS  Google Scholar 

  11. J.A. Oliveira, M.O. Reis, M.S. Pires, L.A.M. Ruotolo, T.C. Ramalho, C.R. Oliveira, L.C.T. Lacerda, F.G.E. Nogueira, Zn-doped Nb2O5 photocatalysts driven by visible-light: an experimental and theoretical study. Mater. Chem. Phys. 228, 160–167 (2019). https://doi.org/10.1016/j.matchemphys.2019.02.062

    Article  CAS  Google Scholar 

  12. K. Omri, A. Alyamani, L.E. Mir, Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays. Appl. Phys. A. 124, 215 (2018). https://doi.org/10.1007/s00339-018-1657-7

    Article  CAS  Google Scholar 

  13. M. Volokh, G. Peng, J. Barrio, M. Shalom, Carbon nitride materials for water splitting photoelectrochemical cells. Angewandte Chem. Int. Edn. 58, 6138–6151 (2019). https://doi.org/10.1002/anie.201806514

    Article  CAS  Google Scholar 

  14. S. Wojtyła, K. Szmit, T. Baran, Type II heterostructures: the way towards improved photoelectrochemical activity of graphitic carbon nitride. J. Inorg. Organomet. Polym. 28, 492–499 (2018). https://doi.org/10.1007/s10904-017-0733-3

    Article  CAS  Google Scholar 

  15. F.R. Pomilla, M.A.L.R.M. Cortes, J.W.J. Hamilton, R. Molinari, G. Barbieri, G. Marcì, L. Palmisano, P.K. Sharma, A. Brown, J.A. Byrne, An investigation into the stability of graphitic C 3 N 4 as a photocatalyst for CO 2 reduction. J. Phys. Chem. C. 122, 28727–28738 (2018). https://doi.org/10.1021/acs.jpcc.8b09237

    Article  CAS  Google Scholar 

  16. P. Jiménez-Calvo, C. Marchal, T. Cottineau, V. Caps, V. Keller, Influence of the gas atmosphere during the synthesis of g-C3 N4 for enhanced photocatalytic H2 production from water on Au/g-C3 N4 composites. J. Mater. Chem. A. 7, 14849–14863 (2019). https://doi.org/10.1039/C9TA01734H

    Article  Google Scholar 

  17. S. Kumar, S. Karthikeyan, A.F. Lee, g-C3N4-based nanomaterials for visible light-driven photocatalysis. Catalysts. 8, 74 (2018). https://doi.org/10.3390/catal8020074

    Article  CAS  Google Scholar 

  18. K. Prakash, S. Karuthapandian, S. Senthilkumar, Zeolite nanorods decorated g-C3N4 nanosheets: a novel platform for the photodegradation of hazardous water contaminants. Mater. Chem. Phys. 221, 34–46 (2019). https://doi.org/10.1016/j.matchemphys.2018.09.026

    Article  CAS  Google Scholar 

  19. M. Fakhrul Ridhwan Samsudin, N. Bacho, S. Sufian, Recent development of graphitic carbon nitride-based photocatalyst for environmental pollution remediation, in Nanocatalysts, ed. by I. Sinha, M. Shukla (IntechOpen, London, 2019). https://doi.org/10.5772/intechopen.81639

    Chapter  Google Scholar 

  20. P. Praus, J. Lang, A. Martaus, L. Svoboda, V. Matějka, M. Kormunda, M. Šihor, M. Reli, K. Kočí, Composites of BiVO4 and g-C3N4: synthesis, properties and photocatalytic decomposition of Azo Dye AO7 and nitrous oxide. J. Inorg. Organomet. Polym. 29, 1219–1234 (2019). https://doi.org/10.1007/s10904-019-01085-4

    Article  CAS  Google Scholar 

  21. R. Tao, S. Yang, C. Shao, X. Li, X. Li, S. Liu, J. Zhang, Y. Liu, Reusable and flexible g-C3 N4 /Ag3 PO4/polyacrylonitrile heterojunction nanofibers for photocatalytic dye degradation and oxygen evolution. ACS Appl. Nano Mater. 2, 3081–3090 (2019). https://doi.org/10.1021/acsanm.9b00428

    Article  CAS  Google Scholar 

  22. V.G. Deonikar, K. Koteshwara Reddy, W.-J. Chung, H. Kim, Facile synthesis of Ag3PO4/g-C3N4 composites in various solvent systems with tuned morphologies and their efficient photocatalytic activity for multi-dye degradation. J. Photochem. Photobiol. A 368, 168–181 (2019). https://doi.org/10.1016/j.jphotochem.2018.09.034

    Article  CAS  Google Scholar 

  23. S. Patnaik, S. Martha, K.M. Parida, An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production. RSC Adv. 6, 46929–46951 (2016). https://doi.org/10.1039/C5RA26702A

    Article  CAS  Google Scholar 

  24. J. Safaei, H. Ullah, N.A. Mohamed, M.F. Mohamad Noh, M.F. Soh, A.A. Tahir, N. Ahmad Ludin, M.A. Ibrahim, W.N.R. Wan Isahak, M.A. Mat Teridi, Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Appl. Catal. B 234, 296–310 (2018). https://doi.org/10.1016/j.apcatb.2018.04.056

    Article  CAS  Google Scholar 

  25. L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng, Z. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis: a review. Appl. Catal. B 217, 388–406 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003

    Article  CAS  Google Scholar 

  26. W.J.C. Futalan, A.C. Serraon, A.A.B. Padama, J.D. Ocon, S-doped graphitic carbon nitride as potential catalyst towards oxygen reduction reaction. ECS Trans. 77, 621–628 (2017). https://doi.org/10.1149/07711.0621ecst

    Article  CAS  Google Scholar 

  27. M.A. Mohamed, M.F.M. Zain, L.J. Minggu, M.B. Kassim, J. Jaafar, N.A. Saidina Amin, Z.A. Mohd Hir, M.S. Rosmi, Enhancement of visible light photocatalytic hydrogen evolution by bio-mimetic C-doped graphitic carbon nitride. Int. J. Hydrog. Energy 44, 13098–13105 (2019). https://doi.org/10.1016/j.ijhydene.2019.02.243

    Article  CAS  Google Scholar 

  28. S. Thaweesak, S. Wang, M. Lyu, M. Xiao, P. Peerakiatkhajohn, L. Wang, Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. Dalton Trans. 46, 10714–10720 (2017). https://doi.org/10.1039/C7DT00933J

    Article  CAS  PubMed  Google Scholar 

  29. X. Song, H. Tao, L. Chen, Y. Sun, Synthesis of Fe/g-C3N4 composites with improved visible light photocatalytic activity. Mater. Lett. 116, 265–267 (2014). https://doi.org/10.1016/j.matlet.2013.11.043

    Article  CAS  Google Scholar 

  30. S. Hu, F. Li, Z. Fan, F. Wang, Y. Zhao, Z. Lv, Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability. Dalton Trans. 44, 1084–1092 (2014). https://doi.org/10.1039/C4DT02658F

    Article  CAS  Google Scholar 

  31. Y. Wang, Q. Hao, X. Li, B. Li, J. Luo, Y. Hu, K. Tang, Preparation of a Li+ intercalated organic derivative of the Ruddlesden-Popper phase H2CaTa2O7. J. Alloys Compd. 645, 24–28 (2015). https://doi.org/10.1016/j.jallcom.2015.05.011

    Article  CAS  Google Scholar 

  32. R. Jin, S. Hu, J. Gui, D. Liu, A convenient method to prepare novel rare earth metal Ce-doped carbon nitride with enhanced photocatalytic activity under visible light. Bull. Korean Chem. Soc. 36, 17–23 (2015). https://doi.org/10.1002/bkcs.10001

    Article  CAS  Google Scholar 

  33. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/nmat2317

    Article  CAS  PubMed  Google Scholar 

  34. D.J. Dunstan, Evidence for a common origin of the Urbach tails in amorphous and crystalline semiconductors. J. Phys. C 15, L419–L424 (1982). https://doi.org/10.1088/0022-3719/15/13/008

    Article  CAS  Google Scholar 

  35. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  36. Y. Yang, D. Xu, Q. Wu, P. Diao, Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction. Sci. Rep. 6, srep35158 (2016). https://doi.org/10.1038/srep35158

    Article  CAS  Google Scholar 

  37. T. Baran, A. Visibile, S. Wojtyła, M. Marelli, S. Checchia, M. Scavini, F. Malara, A. Naldoni, A. Vertova, S. Rondinini, A. Minguzzi, Reverse type I core—CuI /shell—CuO: a versatile heterostructure for photoelectrochemical applications. Electrochim. Acta. 266, 441–451 (2018). https://doi.org/10.1016/j.electacta.2018.02.023

    Article  CAS  Google Scholar 

  38. A.G. Tamirat, A.A. Dubale, W.-N. Su, H.-M. Chen, B.-J. Hwang, Sequentially surface modified hematite enables lower applied bias photoelectrochemical water splitting. Phys. Chem. Chem. Phys. 19, 20881–20890 (2017). https://doi.org/10.1039/C7CP02890C

    Article  CAS  PubMed  Google Scholar 

  39. M. Radecka, P. Sobas, M. Wierzbicka, M. Rekas, Photoelectrochemical properties of undoped and Ti-doped WO3. Phys. B 364, 85–92 (2005). https://doi.org/10.1016/j.physb.2005.03.039

    Article  CAS  Google Scholar 

  40. X. Wang, Y. Zhao, K. Mølhave, H. Sun, Engineering the surface/interface structures of titanium dioxide micro and nano architectures towards environmental and electrochemical applications. Nanomaterials 7, 382 (2017). https://doi.org/10.3390/nano7110382

    Article  CAS  PubMed Central  Google Scholar 

  41. B. Lakehal, A. Bedhiaf, B. Bouaza, A. Hadj, C. Ammari, A. Dalache, B. Lakehal, A. Bedhiaf, B. Bouaza, A. Hadj, C.D. Ammari, Structural, optical and electrical properties of Ni-doped Co3O4 prepared via Sol-Gel technique. Res Mater (2018). https://doi.org/10.1590/1980-5373-mr-2017-0545

    Article  Google Scholar 

  42. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  43. K. Gelderman, L. Lee, S.W. Donne, Flat-band potential of a semiconductor: using the Mott-Schottky equation. J. Chem. Educ. 84, 685 (2007). https://doi.org/10.1021/ed084p685

    Article  CAS  Google Scholar 

  44. J.T. Adeleke, T. Theivasanthi, M. Thiruppathi, M. Swaminathan, T. Akomolafe, A.B. Alabi, Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl. Surface Sci. 455, 195–200 (2018). https://doi.org/10.1016/j.apsusc.2018.05.184

    Article  CAS  Google Scholar 

  45. T. Baran, S. Wojtyła, A. Minguzzi, S. Rondinini, A. Vertova, Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Appl. Catal. B 244, 303–312 (2019). https://doi.org/10.1016/j.apcatb.2018.11.044

    Article  CAS  Google Scholar 

  46. I. Ben-Refael, Y.P. Benisti, Transient photoinduced phenomena in graphitic carbon nitride as measured at nanoseconds resolution by step-scan FTIR. Catal. Today 340, 97–105 (2020). https://doi.org/10.1016/j.cattod.2018.11.010

    Article  CAS  Google Scholar 

  47. Q. Zhang, X. Zhang, Facile fabrication of phosphorus-doped g-C3N4 exhibiting enhanced visible light photocatalytic degradation performance toward textile dye. Solid State Sci. 89, 150–155 (2019). https://doi.org/10.1016/j.solidstatesciences.2019.01.004

    Article  CAS  Google Scholar 

  48. S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3 N4 under visible light irradiation. Langmuir 26, 3894–3901 (2010). https://doi.org/10.1021/la904023j

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The part of research and the preparation of manuscript were financed by SajTom Light Future LTD. 3DKreator implements a project co-financed from European Funds from the Regional Operational Program of the Lesser Poland Voivodship for the years 2014–2020, Priority axis 1 Knowledge economy, Measure 1.2. Research innovations in enterprises, Sub-measure 1.2.1. Research and development projects of enterprises: "Photocatalytic filter system for air limiting the emission of pollutants generated during 3D printing." (Grant No. RPMP.01.02.01–12-0509/16–00). Spectroscopic equipment was purchased with the financial support of the National Science Centre (Poland) within Sonata Project 2016/21/D/ST4/00221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Baran.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(DOCX 1479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojtyła, S., Śpiewak, K. & Baran, T. Doped Graphitic Carbon Nitride: Insights from Spectroscopy and Electrochemistry. J Inorg Organomet Polym 30, 3418–3428 (2020). https://doi.org/10.1007/s10904-020-01496-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01496-8

Keywords

Navigation