Skip to main content

Advertisement

Log in

Colossal dielectric permittivity of Nylon-6 matrix-based composites with nano-TiO2 fillers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein, the nanocomposite films of Nylon-6 with reinforced nano-TiO2 were explored for their charge storage capacity. The high dielectric constant (ε) of TiO2, along with its compatibility with Nylon-6, formed the basis for the present study. TiO2 nanoparticles were synthesized initially using hydrothermal technique. The microscopic uniformity and anatase-phase purity of the TiO2 nanoparticles were confirmed with the help of morphological and structural investigations. The effect of weight fraction of TiO2 in Nylon-6 was investigated to understand the robustness of the fabricated nanocomposites. The composite films with 5, 10 and 20 wt% of TiO2 in Nylon-6 matrix were prepared, and their dielectric behavior was explored by fabricating capacitors with parallel plate architecture. The composite film with 20 wt% TiO2 showed the highest dielectric parameters. The nanocomposite films have the exceptional dielectric quality with ε ~ 124 and low dielectric loss of 0.51 at 1 kHz. The colossal dielectric nature along with minimum sophistication in the film fabrication process makes the present nanocomposite to be a potential candidate for the various electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Yousefi, X. Sun, X. Lin, X. Shen, J. Jia, B. Zhang, B. Tang, M. Chan, J.K. Kim, Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014). https://doi.org/10.1002/adma.201305293

    Article  Google Scholar 

  2. X. Zhou, Z. Jia, A. Feng, X. Wang, J. Liu, M. Zhang, H. Cao, G. Wu, Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 152, 827–836 (2019). https://doi.org/10.1016/j.carbon.2019.06.080

    Article  Google Scholar 

  3. Z. Jia, Z. Gao, A. Feng, Y. Zhang, C. Zhang, G. Nie, K. Wang, G. Wu, Laminated microwave absorbers of A-site cation deficiency perovskite La0.8FeO3 doped at hybrid RGO carbon. Compos. Part B Eng. 176, 107246 (2019). https://doi.org/10.1016/j.compositesb.2019.107246

    Article  Google Scholar 

  4. G. Wu, Y. Cheng, Z. Yang, Z. Jia, H. Wu, L. Yang, H. Li, P. Guo, H. Lv, Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 333, 519–528 (2018). https://doi.org/10.1016/j.cej.2017.09.174

    Article  Google Scholar 

  5. A. Pratap, N.J. Joshi, P.B. Rakshit, G.S. Grewal, V. Shrinet, Dielectric behavior of nano barium titanate filled polymeric composites. Int. J. Mod. Phys. Conf. Ser. 22, 1–10 (2013). https://doi.org/10.1142/S2010194513009859

    Article  Google Scholar 

  6. A. Qureshi, D. Singh, N.L. Singh, S. Ataoglu, A.N. Gulluoglu, A. Tripathi, D.K. Avasthi, Effect of irradiation by 140 Mev Ag11+ ions on the optical and electrical properties of polypropylene/TiO2 composite. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267, 3456–3460 (2009). https://doi.org/10.1016/j.nimb.2009.07.016

    Article  ADS  Google Scholar 

  7. L. Qi, L. Petersson, T. Liu, Review of recent activities on dielectric films for capacitor applications. J. Int. Counc. Electr. Eng. 4, 1–6 (2014). https://doi.org/10.5370/jicee.2014.4.1.001

    Article  Google Scholar 

  8. P.I. Devi, K. Ramachandran, Dielectric studies on hybridised PVDF-ZnO nanocomposites. J. Exp. Nanosci. 6, 281–293 (2011). https://doi.org/10.1080/17458080.2010.497947

    Article  Google Scholar 

  9. A. Qureshi, A. Mergen, M.S. Eroğlu, N.L. Singh, A. Güllüoğlu, Dielectric properties of polymer composites filled with different metals. J. Macromol. Sci. Part A 45, 462–469 (2008). https://doi.org/10.1080/10601320801977756

    Article  Google Scholar 

  10. S. Siddabattuni, T.P. Schuman, Polymer-ceramic nanocomposite dielectrics for advanced energy storage. ACS Symp. Ser. 1161, 165–190 (2014). https://doi.org/10.1021/bk-2014-1161.ch008

    Article  Google Scholar 

  11. L. Li, W. Wong-Ng, J. Sharp, Polymer composites for energy harvesting, conversion, and storage. ACS (2014). https://doi.org/10.1021/bk-2014-1161

    Article  Google Scholar 

  12. A. Srinivasan, S. Bandyopadhyay, Advances in Polymer Materials and Technology (CRC Press, Boca Raton, 2017)

    Google Scholar 

  13. X. Huang, P. Jiang, L. Xie, Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl. Phys. Lett. 95, 242901 (2009). https://doi.org/10.1063/1.3273368

    Article  ADS  Google Scholar 

  14. X. Zhao, A.A. Koos, B.T.T. Chu, C. Johnston, N. Grobert, P.S. Grant, Spray deposited fluoropolymer/multi-walled carbon nanotube composite films with high dielectric permittivity at low percolation threshold. Carbon 47, 561–569 (2009). https://doi.org/10.1016/J.CARBON.2008.10.042

    Article  Google Scholar 

  15. C. Pecharromán, J.S. Moya, Experimental evidence of a giant capacitance in insulator-conductor composites at the percolation threshold. Adv. Mater. 12, 294–297 (2000). https://doi.org/10.1002/(SICI)1521-4095(200002)12:4%3c294:AID-ADMA294%3e3.0.CO;2-D

    Article  Google Scholar 

  16. Y. Shen, Y. Lin, M. Li, C.W. Nan, High dielectric performance of polymer composite films induced by a percolating interparticle barrier layer. Adv. Mater. 19, 1418–1422 (2007). https://doi.org/10.1002/adma.200602097

    Article  Google Scholar 

  17. F. He, S. Lau, H.L. Chan, J. Fan, high dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710–715 (2009). https://doi.org/10.1002/adma.200801758

    Article  Google Scholar 

  18. C. Huang, Q.M. Zhang, J. Su, High dielectric constant all polymer percolative composites. Appl. Phys. Lett. 82, 3502–3504 (2003). https://doi.org/10.1063/1.1575505

    Article  ADS  Google Scholar 

  19. J. Xu, C.P. Wong, Low-loss percolative dielectric composite. Appl. Phys. Lett. 87, 82907 (2005). https://doi.org/10.1063/1.2032597

    Article  Google Scholar 

  20. Z.M. Dang, Y.H. Lin, C.W. Nan, Novel ferroelectric polymer composites with high dielectric constants. Adv. Mater. 15, 1625–1629 (2003). https://doi.org/10.1002/adma.200304911

    Article  Google Scholar 

  21. Z.M. Dang, S.H. Yao, H.P. Xu, Effect of tensile strain on morphology and dielectric property in nanotube/polymer nanocomposites. Appl. Phys. Lett. 90, 12907 (2007). https://doi.org/10.1063/1.2430633

    Article  Google Scholar 

  22. J. Li, J. Claude, L.E. Norena-Franco, S.I. Seok, Q. Wang, Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chem. Mater. 20, 6304–6306 (2008). https://doi.org/10.1021/cm8021648

    Article  Google Scholar 

  23. Q. Chi, X. Wang, C. Zhang, Q. Chen, M. Chen, T. Zhang, L. Gao, Y. Zhang, Y. Cui, X. Wang, Q. Lei, High energy storage density for poly(vinylidene fluoride) composites by introduced core–shell CaCu3Ti4O12 @Al2O3 nanofibers. ACS Sustain. Chem. Eng. 6, 8641–8649 (2018). https://doi.org/10.1021/acssuschemeng.8b00941

    Article  Google Scholar 

  24. Z. Pan, L. Yao, J. Zhai, D. Fu, B. Shen, H. Wang, high energy density polymer nanocomposites composed of newly structured one-dimensional BaTiO3 @Al2O3 Nanofibers. ACS Appl. Mater. Interfaces. 9, 4024–4033 (2017). https://doi.org/10.1021/acsami.6b13663

    Article  Google Scholar 

  25. Q.M. Zhang, H. Li, M. Poh, F. Xia, Z.-Y. Cheng, H. Xu, C. Huang, An all-organic composite actuator material with a high dielectric constant. Nature 419, 284–287 (2002). https://doi.org/10.1038/nature01021

    Article  ADS  Google Scholar 

  26. A. Mahadevegowda, N.P. Young, P.S. Grant, Engineering the nanostructure of a polymer-nanocomposite film containing Ti-based core-shell particles to enhance dielectric response. Nanoscale 7, 15727 (2015). https://doi.org/10.1039/c5nr03824c

    Article  ADS  Google Scholar 

  27. J. Jin, R. Qi, Y. Su, M. Tong, J. Zhu, Preparation of high-refractive-index PMMA/TiO2 nanocomposites by one-step in situ solvothermal method. Iran. Polym. J. 22, 767–774 (2013). https://doi.org/10.1007/s13726-013-0175-x

    Article  Google Scholar 

  28. E. Džunuzović, M. Marinović-Cincović, J. Vuković, K. Jeremić, J.M. Nedeljković, Thermal properties of PMMA/TiO2 nanocomposites prepared by in situ bulk polymerization. Poly. Comp. 30, 737–742 (2009). https://doi.org/10.1002/pc.20606

    Article  Google Scholar 

  29. H. Agrawal, K. Awasthi, V.K. Saraswat, Non-isothermal crystallization kinetics of TiO2 nanoparticle-filled poly(ethylene terephthalate) with structural and chemical properties. Polym. Bull. 71, 1539–1555 (2014). https://doi.org/10.1007/s00289-014-1140-3

    Article  Google Scholar 

  30. T.I. Yang, P. Kofinas, Dielectric properties of polymer nanoparticle composites. Polymer 48, 791–798 (2007). https://doi.org/10.1016/J.POLYMER.2006.12.030

    Article  Google Scholar 

  31. R.J. Isaifan, A. Samara, W. Suwaileh, D. Johnson, W. Yiming, A.A. Abdallah, B. Aïssa, Improved self-cleaning properties of an efficient and easy to scale up TiO2 thin films prepared by adsorptive self-assembly. Sci. Rep. 7, 9466 (2017). https://doi.org/10.1038/s41598-017-07826-0

    Article  ADS  Google Scholar 

  32. S. Meti, U.K. Bhat, M.R. Rahman, M. Jayalakshmi, Photocatalytic behaviour of nanocomposites of sputtered titanium oxide film on graphene oxide nanosheets. Am. J. Mater. Sci. 5, 12–18 (2015). https://doi.org/10.5923/c.materials.201502.03

    Article  Google Scholar 

  33. M.T.S. Tavares, A.S.F. Santos, I.M.G. Santos, M.R.S. Silva, M.R.D. Bomio, E. Longo, C.A. Paskocimas, F.V. Motta, TiO2/PDMS nanocomposites for use on self-cleaning surfaces. Surf. Coat. Technol. 239, 16–19 (2014). https://doi.org/10.1016/J.SURFCOAT.2013.11.009

    Article  Google Scholar 

  34. G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei, H. Tang, TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49, 2693–2701 (2011). https://doi.org/10.1016/J.CARBON.2011.02.059

    Article  Google Scholar 

  35. K.C. Sun, M.B. Qadir, S.H. Jeong, Hydrothermal synthesis of TiO2 nanotubes and their application as an over-layer for dye-sensitized solar cells. RSC Adv. 4, 23223 (2014). https://doi.org/10.1039/c4ra03266g

    Article  Google Scholar 

  36. I.B. Troitskaia, T.A. Gavrilova, V.V. Atuchin, Structure and micromorphology of titanium dioxide nanoporous microspheres formed in water solution. Phys. Technol. Nanostruct. Mater. 23, 65–68 (2012). https://doi.org/10.1016/j.phpro.2012.01.017

    Article  Google Scholar 

  37. V.M. Kalygina, I.S. Egorova, I.A. Prudaev, O.P. Tolbanov, V.V. Atuchin, Photoelectrical characteristics of TiO2-N-SI heterostructures. Microw. Opt. Technol. Lett. 58, 1113–1116 (2016). https://doi.org/10.1002/mop.29737

    Article  Google Scholar 

  38. V.N. Kruchinin, T.V. Perevalov, V.V. Atuchin, V.A. Gritsenko, A.I. Komonov, I.V. Korolkov, L.D. Pokrovsky, C.W. Shih, A. Chin, Optical properties of TiO2 films deposited by reactive electron beam sputtering. J. Electron. Mater. 46, 6089–6095 (2017). https://doi.org/10.1007/s11664-017-5552-3

    Article  ADS  Google Scholar 

  39. S. Liu, C. Liu, W. Wang, B. Cheng, J. Yu, Unique photocatalytic oxidation reactivity and selectivity of TiO2–graphene nanocomposites. Nanoscale 4, 3193 (2012). https://doi.org/10.1039/c2nr30427a

    Article  ADS  Google Scholar 

  40. A. Ramadoss, S.J. Kim, Improved activity of a graphene–TiO2 hybrid electrode in an electrochemical supercapacitor. Carbon 63, 434–445 (2013). https://doi.org/10.1016/J.CARBON.2013.07.006

    Article  Google Scholar 

  41. H. Dong, D. Wang, G. Sun, J.P. Hinestroza, Assembly of metal nanoparticles on electrospun Nylon 6 nanofibers. Chem. Mater. 20, 6627–6632 (2008). https://doi.org/10.1021/cm801077p

    Article  Google Scholar 

  42. G. Rusu, E. Rusu, Nylon 6/TiO2 composites by in situ anionic ring-opening polymerization of ϵ-caprolactam: synthesis, characterization, and properties. Int. J. Polym. Anal. Charact. 16, 561–583 (2011). https://doi.org/10.1080/1023666X.2011.622103

    Article  Google Scholar 

  43. S. Kango, S. Kalia, A. Celli, J. Njuguna, Y. Habibi, R. Kumar, Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—a review. Prog. Polym. Sci. 38, 1232–1261 (2013). https://doi.org/10.1016/J.PROGPOLYMSCI.2013.02.003

    Article  Google Scholar 

  44. B. Neher, M.M. Rahman Bhuiyan, M.A. Gafur, H. Kabir, M.A. Hoque, M.S. Bashar, F. Ahmed, M.A. Hossain, Study of the electric properties of palm fiber-reinforced acrylonitrile butadiene styrene composites. J. Reinf. Plast. Compos. 34, 1253–1260 (2015). https://doi.org/10.1177/0731684415591067

    Article  Google Scholar 

  45. S. Chowdhury, G.K. Parshetti, R. Balasubramanian, Post-combustion CO2 capture using mesoporous TiO2/graphene oxide nanocomposites. Chem. Eng. J. 263, 374–384 (2015). https://doi.org/10.1016/J.CEJ.2014.11.037

    Article  Google Scholar 

  46. N. Vasanthan, D.R. Salem, FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing. J. Polym. Sci., Part B: Polym. Phys. 39, 536–547 (2001). https://doi.org/10.1002/1099-0488(20010301)39:5%3c536:AID-POLB1027%3e3.0.CO;2-8

    Article  ADS  Google Scholar 

  47. Y. Zhang, Y. Zhang, S. Liu, A. Huang, Z. Chi, J. Xu, J. Economy, Phase stability and melting behavior of the α and γ phases of nylon 6. J. Appl. Polym. Sci. 120, 1885–1891 (2011). https://doi.org/10.1002/app.33047

    Article  Google Scholar 

  48. C. Zhang, Y. Liu, S. Liu, H. Li, K. Huang, Q. Pan, X. Hua, C. Hao, Q. Ma, C. Lv, W. Li, Z. Yang, Y. Zhao, D. Wang, G. Lai, J. Jiang, Y. Xu, J. Wu, Crystalline behaviors and phase transition during the manufacture of fine denier PA6 fibers. Sci. China, Ser. B: Chem. 52, 1835–1842 (2009). https://doi.org/10.1007/s11426-009-0242-5

    Article  Google Scholar 

  49. X. Pu, D. Zhang, Y. Gao, X. Shao, G. Ding, S. Li, S. Zhao, One-pot microwave-assisted combustion synthesis of graphene oxide–TiO2 hybrids for photodegradation of methyl orange. J. Alloys Compd. 551, 382–388 (2013). https://doi.org/10.1016/J.JALLCOM.2012.11.028

    Article  Google Scholar 

  50. V.V. Atuchin, T.A. Gavrilova, J.C. Grivel, V.G. Kesler, Electronic structure of layered titanate Nd2Ti2O7. Surf. Sci. 602, 3095–3099 (2008). https://doi.org/10.1016/j.susc.2008.07.040

    Article  ADS  Google Scholar 

  51. V.V. Atuchin, V.G. Kesler, N.V. Pervukhina, Z. Zhang, Ti 2p and O 1s core levels and chemical bonding in titanium-bearing oxides. J. Electron Spectrosc. Relat. Phenom. 152, 18–24 (2006). https://doi.org/10.1016/j.elspec.2006.02.004

    Article  Google Scholar 

  52. Y. Chen, H. Wang, B. Dang, Y. Xiong, Q. Yao, C. Wang, Q. Sun, C. Jin, Bio-inspired nacre-like nanolignocellulose-poly (vinyl alcohol)-TiO2 composite with superior mechanical and photocatalytic properties. Sci. Rep. 7, 1823 (2017). https://doi.org/10.1038/s41598-017-02082-8

    Article  ADS  Google Scholar 

  53. J. Yu, C. Xu, Z. Tian, Y. Lin, Z. Shi, Facilely synthesized N-doped carbon quantum dots with high fluorescent yield for sensing Fe3+. New J. Chem. 40, 2083–2088 (2016). https://doi.org/10.1039/C5NJ03252K

    Article  Google Scholar 

  54. N.N. Golovnev, M.S. Molokeev, M.K. Lesnikov, V.V. Atuchin, First outer-sphere 1,3-diethyl-2-thiobarbituric compounds [M(H2O)6](1,3-diethyl-2-thiobarbiturate)2·2H2O (M = Co2+, Ni2+): crystal structure, spectroscopic and thermal properties. Chem. Phys. Lett. 653, 54–59 (2016). https://doi.org/10.1016/j.cplett.2016.04.059

    Article  ADS  Google Scholar 

  55. N.N. Golovnev, M.S. Molokeev, M.K. Lesnikov, I.V. Sterkhova, V.V. Atuchin, Thiobarbiturate and barbiturate salts of pefloxacin drug: growth, structure, thermal stability and IR-spectra. J. Mol. Struct. 1149, 367–372 (2017). https://doi.org/10.1016/j.molstruc.2017.08.011

    Article  ADS  Google Scholar 

  56. H. Esfahani, M.P. Prabhakaran, E. Salahi, A. Tayebifard, M. Keyanpour-Rad, M.R. Rahimipour, S. Ramakrishna, Protein adsorption on electrospun zinc doped hydroxyapatite containing Nylon 6 membrane: kinetics and isotherm. J. Colloid Interface Sci. 443, 143–152 (2015). https://doi.org/10.1016/j.jcis.2014.12.014

    Article  ADS  Google Scholar 

  57. A. Abdal-hay, J. Lim, M. Shamshi Hassan, J.K. Lim, Ultrathin conformal coating of apatite nanostructures onto electrospun Nylon 6 nanofibers: mimicking the extracellular matrix. Chem. Eng. J. 228, 708–716 (2013). https://doi.org/10.1016/j.cej.2013.05.022

    Article  Google Scholar 

  58. M. Kaur, N.K. Verma, CaCO3/TiO2 nanoparticles based dye sensitized solar cell. J. Mater. Sci. Technol. 30, 328–334 (2014). https://doi.org/10.1016/J.JMST.2013.10.016

    Article  Google Scholar 

  59. J. Fang, F. Wang, K. Qian, H. Bao, Z. Jiang, W. Huang, Bifunctional N-doped mesoporous TiO2 photocatalysts. J. Phys. Chem. C 112, 18150–18156 (2008). https://doi.org/10.1021/jp805926b

    Article  Google Scholar 

  60. K. Lv, H. Zuo, J. Sun, K. Deng, S. Liu, X. Li, D. Wang, (Bi, C and N) codoped TiO2 nanoparticles. J. Hazard. Mater. 161, 396–401 (2009). https://doi.org/10.1016/J.JHAZMAT.2008.03.111

    Article  Google Scholar 

  61. R.S. Ernest-Ravindran, P. Thomas, S. Renganathan, Studies on the structural, thermal, and dielectric properties of fabricated Nylon 6,9/CaCu3Ti4O12 nanocomposites. Sci. Eng. Compos. Mater. 24, 185–194 (2017). https://doi.org/10.1515/secm-2014-0342

    Article  Google Scholar 

  62. A.V. Shinde, S.A. Pande, S.S. Joshi, S.A. Acharya, Novel ceramic-polyamide nanocomposites approach to make flexible film of PZT ceramics: structural and dielectric study. Ferroelectrics 502, 187–196 (2016). https://doi.org/10.1080/00150193.2016.1235895

    Article  Google Scholar 

  63. B.E. Kilbride, J.N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, W.J. Blau, Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J. Appl. Phys. 92, 4024–4030 (2002). https://doi.org/10.1063/1.1506397

    Article  ADS  Google Scholar 

  64. C.W. Nan, Comment on “Effective dielectric function of a random medium”. Phys. Rev. B. Condens. Matter Mater. Phys. 63, 5–7 (2001). https://doi.org/10.1103/PhysRevB.63.176201

    Article  Google Scholar 

  65. Y. Bar-Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges (SPIE Press, Bellingham, 2004)

    Google Scholar 

  66. B. Hussien, The D.C and A.C electrical properties of (PMMA-Al2O3) composites. Eur. J. Sci. Res. 52(2), 236–242 (2011)

    Google Scholar 

  67. P. Thomas, R.S. Ernest Ravindran, K.B.R. Varma, Structural, thermal and electrical properties of poly(methyl methacrylate)/CaCu3Ti4O12 composite sheets fabricated via melt mixing. J. Therm. Anal. Calorim. 115, 1311–1319 (2014). https://doi.org/10.1007/s10973-013-3500-x

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge Dr. A. Srinivasan, (Professor) Dept. of Metallurgical and Materials Engineering, and his students, Mr. M. Khalifa and Mr. Govinda E. for helping in carrying out FTIR studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udaya K. Bhat.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meti, S., Bhat, U.K. & Rahman, M.R. Colossal dielectric permittivity of Nylon-6 matrix-based composites with nano-TiO2 fillers. Appl. Phys. A 126, 264 (2020). https://doi.org/10.1007/s00339-020-3445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3445-4

Keywords

Navigation