Skip to main content
Log in

Investigation of ultrashort laser excitation of aluminum and tungsten by reflectivity measurements

  • S.I. : Current State-Of-The-Art in Laser Ablation
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We determine the laser-induced ablation threshold fluence in air of aluminum and tungsten excited by single near-infrared laser pulses with duration ranging from 15 to 100 fs. The ablation threshold fluence is shown to be constant for both metals, extending the corresponding scaling metrics to few-optical-cycle laser pulses. Meanwhile, the reflectivity is measured providing access to the deposited energy in the studied materials on a wide range of pulse durations and incident fluences below and above the ablation threshold. A simulation approach, based on the two-temperature model and the Drude–Lorentz model, is developed to describe the evolution of the transient thermodynamic and optical characteristics of the solids (lattice and electronic temperatures, reflectivity) following laser excitation. The confrontation between experimental results and simulations highlights the importance of considering a detailed description and evolution of the density of states in transition metals like tungsten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Cheng, C.-S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, K. Watkins, Opt. Laser Technol. 46, 88 (2013)

    Article  ADS  Google Scholar 

  2. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14(10), 2716 (1997)

    Article  ADS  Google Scholar 

  3. J. Bonse, S. Höhm, S.V. Kimer, A. Rosenfeld, J. Krüger, IEEE J. Sel. Top. Quantum Electron. 23(3), 9000615 (2017)

    Article  Google Scholar 

  4. A.Y. Vorobyev, C. Guo, Laser Photonics Rev. (2012). https://doi.org/10.1002/lpor.201200017

    Article  Google Scholar 

  5. S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Phys. 39(2), 375 (1974)

    Google Scholar 

  6. B.Y. Mueller, B. Rethfeld, Phys. Rev. B 87, 035139 (2013)

    Article  ADS  Google Scholar 

  7. B. Chimier, V.T. Tikhonchuk, L. Hallo, Phys. Rev. B 75, 195124 (2007)

    Article  ADS  Google Scholar 

  8. A. Suslova, A. Hassanein, Laser Particle Beams 35(3), 415 (2017)

    Article  Google Scholar 

  9. N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001)

    Article  ADS  Google Scholar 

  10. C. Cheng, X. Xu, Appl. Phys. A 79, 761 (2004)

    Article  ADS  Google Scholar 

  11. Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  12. N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, F. Vallée, Phys. Rev. B 61, 16956 (2000)

    Article  ADS  Google Scholar 

  13. E. Bévillon, J.P. Colombier, V. Recoules, R. Stoian, Phys. Rev. B 89, 115117 (2014)

    Article  ADS  Google Scholar 

  14. E. Bévillon, R. Stoian, JPh Colombier, J. Phys.: Condens. Matter 30, 385401 (2018)

    Google Scholar 

  15. C. Pasquier, P. Blandin, R. Clady, N. Sanner, M. Sentis, O. Utéza, Yu. Li, Opt. Commun. 355, 230 (2015)

    Article  ADS  Google Scholar 

  16. T. Genieys, “Ablation laser en régime ultracourt de cibles diélectriques et métalliques, Ph.D. thesis (Aix-Marseille University, 2019), http://www.theses.fr

  17. T. Genieys, M. Sentis, O. Utéza, Advanced Optical Technologies, in review (2019)

  18. D.E. Adams, T.A. Planchon, J.A. Squier, C.G. Durfee, Opt. Lett. 35, 1115 (2010)

    Article  ADS  Google Scholar 

  19. A.D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5721 (1998)

    Article  Google Scholar 

  20. C. Kittel, Physique de l’état solide, 7th edn. (Dunod, Paris, 1998)

    Google Scholar 

  21. A.M. Prokhorov, V.I. Konov, I. Ursu, I.N. Mihailescu, Laser Heating of Metals (The Adam Hilger Series on Optics and Optoelectronics, Bristol, 1990)

    Google Scholar 

  22. K. Eidmann, J. Meyer ter Vehn, T. Schlegel, S. Hüller, Phys. Rev. E 62(1), 1202 (2000)

    Article  ADS  Google Scholar 

  23. E.G. Gamaly, A.V. Rode, Progress Quant. Electron. 37, 215 (2013)

    Article  ADS  Google Scholar 

  24. D.R. Lide, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, London, 2003–2004)

  25. Handbook of Optical Materials, in M.J. Weber ed., (CRC Press, LLC, NYC, USA, 2003)

  26. D. Pines, P. Nozières, The Theory of Quantum Liquids (Benjamin, New-York, 1966)

    MATH  Google Scholar 

  27. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  28. R. Le Harzic, D. Breitling, M. Weikert, S. Sommer, C. Föhl, F. Dausinger, S. Valette, C. Donnet, E. Audouard, Appl. Phys. A 80, 1589 (2005)

    Article  ADS  Google Scholar 

  29. J.-M. Savolainen, M.S. Christensen, P. Balling, Phys. Rev. B 84, 193410 (2011)

    Article  ADS  Google Scholar 

  30. E. Gamaly, N.R. Madsen, M. Duering, A.V. Rode, V.Z. Kozlev, B. Luther-Davies, Phys. Rev. B 71, 174405 (2005)

    Article  ADS  Google Scholar 

  31. J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Appl. Phys. A 101, 97 (2010)

    Article  ADS  Google Scholar 

  32. R. Ramis, J.R. Sanmartin, Nucl. Fusion 23(6), 739 (1983)

    Article  Google Scholar 

  33. A. Miotello, R. Kelly, Appl. Phys. A 69, S67 (1999)

    Article  ADS  Google Scholar 

  34. M.E. Povarnitsyn, T.E. Itina, M. Sentis, K.V. Khishenko, P.R. Levashov, Phys. Rev. B 75, 235414 (2007)

    Article  ADS  Google Scholar 

  35. S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, J. Phys. D Appl. Phys. 40, 331 (2007)

    Article  ADS  Google Scholar 

  36. L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)

    Article  Google Scholar 

  37. V. Morel, A. Bultel, B.G. Chéron, Int. J. Thermophys. 30, 1853 (2009)

    Article  ADS  Google Scholar 

  38. E.P. Silaeva, E. Bevillon, R. Stoian, J.P. Colombier, Phys. Rev. B 98, 094306 (2018)

    Article  ADS  Google Scholar 

  39. G.D. Tsibidis, Appl. Phys. A 124, 311 (2018)

    Article  ADS  Google Scholar 

  40. A.D. Rakhel, A. Kloss, H. Hess, Int. J. Thermophys. 23(5), 1369 (2002)

    Article  Google Scholar 

  41. H. Zhang, C. Li, E. Bevillon, G. Cheng, J.P. Colombier, R. Stoian, Phys. Rev. B 94, 224103 (2016)

    Article  ADS  Google Scholar 

  42. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, Phys. Rev. Lett. 80(18), 4076 (1998)

    Article  ADS  Google Scholar 

  43. N.W. Ashcroft, N.D. Mermin, Physique des Solides (EDP Sciences, Les Ulis, 2002)

    Google Scholar 

Download references

Acknowledgements

Thibault Genieys acknowledges the support of DGA—Direction Générale de l’Armement (Ministry of Defense) and Aix-Marseille University for his Ph’D grant. All authors also thank Prof. E. Gamaly (Laser Physics Centre, Australian National University) and Dr. G. Tsibidis (IESL-FORTH) for valuable discussions on the topic of laser–matter interaction and CNRS-DERCI for their financial support through the International Research Project “IRP-MINOS.”

Funding

Financial support of the ASUR platform was provided by the European Community, Ministry of Research and High Education, Region Provence-Alpes-Côte d’Azur, Department of Bouches-du-Rhône, City of Marseille, CNRS, and Aix-Marseille University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Genieys.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genieys, T., Sentis, M. & Utéza, O. Investigation of ultrashort laser excitation of aluminum and tungsten by reflectivity measurements. Appl. Phys. A 126, 263 (2020). https://doi.org/10.1007/s00339-020-3440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3440-9

Keywords

Navigation