Skip to main content
Log in

Methane activation at low temperature in an acidic electrolyte using PdAu/C, PdCu/C, and PdTiO2/C electrocatalysts for PEMFC

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Pd/C, PdAu/C, PdCu/C, and PdTiO2/C electrocatalysts were prepared by a sodium borohydride reduction process for methane activation at low temperatures in a PEMFC reactor. These electrocatalysts were characterized by XRD, TEM, XPS, ICP-MS, ATR-FTIR, and cyclic voltammetry. The diffractograms of Pd/C, PdAu(50:50)/C, PdCu(50:50)/C, and PdTiO2(50:50)/C electrocatalysts showed peaks associated with Pd face-centered cubic structure. PdAu(50:50)/C showed a small shift in the peak center when it was compared to Pd/C, while PdCu(50:50)/C showed a shift to higher angles when it was also compared to Pd/C. This effect can be due to the formation of an alloy between Pd and Au, and Pd and Cu. By TEM experiments, a mean nanoparticle size was observed between 6.9 and 8.9 nm for all electrocatalysts. Cyclic voltammograms of Pd/C, PdAu/C, PdCu/C and PdTiO2/C electrocatalysts showed an increase in current density values after the adsorption of methane The ATR-FTIR experiments showed for all electrocatalysts the formation of methanol and formic acidic. Polarization curves at 80 °C acquired in a PEMFC reactor showed that PdAu(50:50)/C and PdTiO2(50:50)/C had superior performance when compared to Pd/C, indicating the beneficial effect of adding the co-catalyst; this behavior has been attributed to the bifunctional mechanism or electronic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Abbasi, G. Huang, G.M. Istratescu, L. Wu, R.E. Hayes, Can. J. Chem. Eng. 93(8), 1474 (2015)

    CAS  Google Scholar 

  2. R.E. Hayes, S.T. Kolaczkowski, Introduction to catalytic combustion (Gordon and Breach Science Publishers, Reading, 1997)

    Google Scholar 

  3. R.E. Hayes, S.T. Kolaczkowski, P.K.C. Li, S. Awdry, Chem. Eng. Sci. 56(16), 4815 (2001)

    CAS  Google Scholar 

  4. N. Radenahmad, A. Afif, P.I. Petra, S.M.H. Rahman, S.-G. Eriksson, A.K. Azad, Renew. Sustain. Energy Rev. 57, 1347 (2016)

    CAS  Google Scholar 

  5. B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001)

    CAS  PubMed  Google Scholar 

  6. B. Suleiman, A.S. Abdulkareem, U. Musa, I.A. Mohammed, M.A. Olutoye, Y.I. Abdullahi, Energy Convers. Manag. 117, 228 (2016)

    CAS  Google Scholar 

  7. Y. Liu, L. Hua, J. Power Sources 195(11), 3529 (2010)

    CAS  Google Scholar 

  8. S. Mekhilef, R. Saidur, A. Safari, Renew. Sustain. Energy Rev. 16(1), 981 (2012)

    CAS  Google Scholar 

  9. M. Joglekar, V. Nguyen, S. Pylypenko, C. Ngo, Q. Li, M.E. O’Reilly, T.S. Gray, W.A. Hubbard, T.B. Gunnoe, A.M. Herring, A.B.G. Trewyn, J. Am. Chem. Soc. 138(1), 116 (2016)

    CAS  PubMed  Google Scholar 

  10. A. Maione, F. André, P. Ruiz, Appl. Catal. B Environ. 75(1–2), 59 (2007)

    CAS  Google Scholar 

  11. L. Lv, D. Zha, Y. Ruan, Z. Li, X. Ao, J. Zheng, J. Jiang, H.M. Chen, W.-H. Chiang, J. Chen, C. Wang, ACS Nano 12, 3042 (2018)

    CAS  PubMed  Google Scholar 

  12. W.R. Schwartz, L.D. Pfefferle, J. Am. Chem. Soc. 116(15), 8571 (2012)

    CAS  Google Scholar 

  13. K. Sekizawa, H. Widjaja, S. Maeda, Y. Ozawa, K. Eguchi, Catal. Today 59(1–2), 69 (2000)

    CAS  Google Scholar 

  14. K. Sekizawa, H. Widjaja, S. Maeda, Y. Ozawa, K. Eguchi, Appl. Catal. A Gen 200(1–2), 211 (2000)

    CAS  Google Scholar 

  15. P.J. Kulesza, I.S. Pieta, I.A. Rutkowska, A. Wadas, D. Marks, K. Klak, L. Stobinski, J.A. Cox, Electrochim. Acta 110, 474 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. A.O. Neto, J. Nandenha, R.F.B. De Souza, G.S. Buzzo, J.C.M. Silva, E.V. Spinacé, M.H.M.T. Assumpção, J. Fuel Chem. Technol. 42(7), 851 (2014)

    CAS  Google Scholar 

  17. X. Chang, T. Wang, Z.-J. Zhao, P. Yang, J. Greeley, R. Mu, G. Zhang, Z. Gong, Z. Luo, J. Chen, Y. Cui, G.A. Ozin, J. Gong, Angew. Chem. Int. Ed. 57, 15415 (2018)

    CAS  Google Scholar 

  18. F. Munoz, C. Hua, T. Kwong, L. Tran, T.Q. Nguyen, J.L. Haan, Appl. Catal. B Environ. 174, 323 (2015)

    Google Scholar 

  19. J.C.M. Silva, G.S. Buzzo, R.F.B. de Souza, E.V. Spinacé, A.O. Neto, M.H.M.T. Assumpção, Electrocatalysis 6, 86 (2015)

    CAS  Google Scholar 

  20. S.G. da Silva, J.C.M. Silva, G.S. Buzzo, E.V. Spinacé, A.O. Neto, M.H.M.T. Assumpção, Electrocatalysis 6, 442 (2015)

    Google Scholar 

  21. N. Agarwal, S.J. Freakley, R.U. McVicker, S.M. Althahban, N. Dimitratos, Q. He, D.J. Morgan, R.L. Jenkins, D.J. Willock, S.H. Taylor, C.J. Kiely, G.J. Hutchings, Science 358, 223 (2017)

    CAS  PubMed  Google Scholar 

  22. R.M. Piasentin, R.F.B. de Souza, J.C.M. Silva, E.V. Spinacé, M.C. Santos, A.O. Neto, Int. J. Electrochem. Sci. 8, 435 (2013)

    CAS  Google Scholar 

  23. A.O. Neto, M. Brandalise, R.R. Dias, J.M.S. Ayoub, A.C. Silva, J.C. Penteado, M. Linardi, E.V. Spinacé, Int. J. Hydrogen Energy 35(17), 9177 (2010)

    Google Scholar 

  24. J. Nandenha, R.F.B. de Souza, M.H.M.T. Assumpção, E.V. Spinacé, A.O. Neto, Int. J. Electrochem. Sci. 8, 9171 (2013)

    CAS  Google Scholar 

  25. M. Brandalise, M.M. Tusi, R.M. Piasentin, M.C. dos Santos, E.V. Spinacé, A.O. Neto, Int. J. Electrochem. Sci. 7, 9609 (2012)

    CAS  Google Scholar 

  26. J. Nandenha, R.F.B. de Souza, M.H.M.T. Assumpção, E.V. Spinacé, A.O. Neto, Ionics 19, 1207 (2013)

    CAS  Google Scholar 

  27. J. Nandenha, E.H. Fontes, R.M. Piasentin, F.C. Fonseca, A.O. Neto, J. Fuel Chem. Technol. 46(9), 1137 (2018)

    CAS  Google Scholar 

  28. M.C.L. Santos, J. Nandenha, J.M.S. Ayoub, M.H.M.T. Assumpção, A.O. Neto, J Fuel Chem. Technol 46(12), 1462 (2018)

    CAS  Google Scholar 

  29. C.V. Pereira, E.H. Fontes, J. Nandenha, M.H.M.T. Assumpção, A.O. Neto, Int. J. Electrochem. Sci. 13, 10587 (2018)

    CAS  Google Scholar 

  30. E.V. Spinacé, R.R. Dias, M. Brandalise, M. Linardi, A.O. Neto, Ionics 16, 91 (2010)

    Google Scholar 

  31. M.H.M.T. Assumpção, J. Nandenha, G.S. Buzzo, J.C.M. Silva, E.V. Spinacé, A.O. Neto, R.F.B. de Souza, J. Power Sources 253, 392 (2014)

    Google Scholar 

  32. C.A. Ottoni, C.E.D. Ramos, R.F.B. de Souza, S.G. da Silva, E.V. Spinacé, A.O. Neto, Int. J. Electrochem. Sci. 13, 1893 (2018)

    CAS  Google Scholar 

  33. L. Feng, S. Yao, X. Zhao, L. Yan, C. Liu, W. Xing, J. Power Sources 197, 38 (2012)

    CAS  Google Scholar 

  34. W. Li, X. Zhao, A. Manthiram, J. Mater. Chem. A 2(10), 3468 (2014)

    CAS  Google Scholar 

  35. T. Cochell, A. Manthiram, Langmuir 28(2), 1579 (2012)

    CAS  PubMed  Google Scholar 

  36. A. Dutta, J. Datta, Int. J. Hydrogen Energy 38(19), 7789 (2013)

    CAS  Google Scholar 

  37. A. Dutta, A. Mondal, P. Broekmann, J. Datta, J. Power Sources 361, 276 (2017)

    CAS  Google Scholar 

  38. P. Gobbo, Z. Mossman, A. Nazemi, A. Niaux, M.C. Biesinger, E.R. Gilles, M.S. Workentin, J. Mater. Chem. B 2, 1764 (2014)

    CAS  PubMed  Google Scholar 

  39. Y. Suo, Z. Zhang, J. He, Z. Zhang, G. Hu, Ionics 22(6), 985 (2016)

    CAS  Google Scholar 

  40. F. Gao, D.W. Goodman, Chem. Soc. Rev. 41(24), 8009 (2012)

    CAS  PubMed  Google Scholar 

  41. F.P. da Silva, J.L. Fiorio, R.V. Gonçalves, E. Teixeira-Neto, L.M. Rossi, Ind. Eng. Chem. Res. 57, 16209 (2018)

    Google Scholar 

  42. Z. Chen, Y.C. He, J.H. Chen, X.Z. Fu, R. Sun, Y.X. Chen, C.P. Wong, J. Phys. Chem. C 122(16), 8976 (2018)

    CAS  Google Scholar 

  43. C. Xu, Y. Liu, J. Wang, H. Geng, H. Qiu, J. Power Sources 199, 124 (2012)

    CAS  Google Scholar 

  44. M.C. Biesinger, Surf. Interface Anal. 49, 1325 (2017)

    CAS  Google Scholar 

  45. A. Zana, C. Rüdiger, J. Kunze-Liebhäuser, G. Granozzi, N.E. Reeler, T. Vosch, M. Arenz, Electrochim. Acta 139, 21 (2014)

    CAS  Google Scholar 

  46. D. Steiner, A. Auer, E. Portenkirchner, J. Kunze-Liebhäuser, J. Electroanal. Chem. 812, 166 (2018)

    CAS  Google Scholar 

  47. K. Hamada, H. Morishita, Sci. Bull. Fac. Educ. Nagasaki Univ. 26, 39 (1975)

    Google Scholar 

  48. B.S. Beckingham, N.A. Lynd, D.J. Miller, J. Membr. Sci. 550, 348 (2018)

    CAS  Google Scholar 

  49. K.Z. Gaca-Zając, B.R. Smith, A. Nordon, A.J. Fletcher, K. Johnston, J. Sefcik, Vib. Spectrosc. 97, 44 (2018)

    Google Scholar 

  50. P. Tomkins, M. Ranocchiari, J.A. Van Bokhoven, Acc. Chem. Res. 50, 418 (2017)

    CAS  PubMed  Google Scholar 

  51. Z. Zakaria, S.K. Kamarudin, Renew. Sustain. Energy Rev. 65, 250 (2016)

    CAS  Google Scholar 

  52. R.A. Periana, D.J. Taube, S. Gamble, H. Taube, T. Satoh, H. Fujii, Science 280, 560 (1998)

    CAS  PubMed  Google Scholar 

  53. R. Horn, R. Schlögl, Catal. Lett. 145, 23 (2015)

    CAS  Google Scholar 

  54. J.-S. Min, H. Ishige, M. Misono, N. Mizuno, J. Catal. 198, 116 (2001)

    CAS  Google Scholar 

  55. Á. López-Martín, A. Caballero, G. Colón, J. Photochem. Photobiol. A Chem. 349, 216 (2017)

    Google Scholar 

  56. X. Chen, Y. Li, X. Pan, D. Cortie, X. Huang, Z. Yi, Nat. Commun. 7, 12273 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. J. Zhou, Y. Xu, X. Zhou, J. Gong, Y. Yin, H. Zheng, H. Guo, ChemSusChem 4, 1095 (2011)

    CAS  PubMed  Google Scholar 

  58. Y. Gong, M. Zhou, Phys. Chem. Chem. Phys. 11(39), 8714 (2009)

    CAS  PubMed  Google Scholar 

  59. J.W. Kauffman, R.H. Hauge, J.L. Margrave, J. Phys. Chem. 89(16), 3547 (1985)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the CAPES, FAPESP (2014/09087-4, 2014/50279-4, 2017/11937-4, 2017/21846-6 and 2017/22976-0), CINE-SHELL (ANP)/FAPESP Grants (2017/11937-4), and CNPq (300816/2016-2 and 429727/2018-6) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Nandenha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Moura Souza, F., de Souza, R.F.B., Batista, B.L. et al. Methane activation at low temperature in an acidic electrolyte using PdAu/C, PdCu/C, and PdTiO2/C electrocatalysts for PEMFC. Res Chem Intermed 46, 2481–2496 (2020). https://doi.org/10.1007/s11164-020-04102-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04102-1

Keywords

Navigation