Skip to main content
Log in

Effects of Actin Cytoskeleton Disruption on Electroporation In Vitro

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The role of actin fibers in cellular responses to external electric pulses is not clear yet. In this study, we utilized the blocker of actin polymerization, cytochalasin D (cytoD), and investigated its effects on the electropore generation. Eight 100 μs electric pulses of sub-kilovolt per centimeter voltage with 100 ms intervals were applied to adhered cells in vitro, and the membrane permeability was quantified using membrane-impermeable propidium iodide (PI) dye. With cytoD application, the transfer of PI dye decreased significantly in all the applied voltages. At the same time, the roughness of cells increased, the membrane stiffness decreased, and the transmembrane resting potential decreased. Our result supports that actin fibers have clear effects on electroporation through modulating membrane properties including transmembrane resting potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yarmush, M. L., Golberg, A., Serša, G., Kotnik, T., & Miklavčič, D. (2014). Electroporation-based technologies for medicine: principles, applications, and challenges. Annual Review of Biomedical Engineering, 16, 30295–30320.

    Article  Google Scholar 

  2. Spencer, S. C. (1993). Electroporation technique of DNA transfection. Applied Biochemistry and Biotechnology, 42(1), 75–82.

    Article  CAS  PubMed  Google Scholar 

  3. Probst, U., Fuhrmann, I., Beyer, L., & Wiggermann, P. (2018). Electrochemotherapy as a new modality in interventional oncology: a review. Technology in Cancer Research & Treatment, 17, 1533033818785329.

    Article  Google Scholar 

  4. Yang, W., Wu, Y. H., Yin, D., Koeffler, H. P., Sawcer, D. E., Vernier, P. T., & Gundersen, M. A. (2011). Differential sensitivities of malignant and normal skin cells to nanosecond pulsed electric fields. Technology in Cancer Research & Treatment, 10(3), 281–286.

    Article  CAS  Google Scholar 

  5. Frandsen, S. K., Krüger, M. B., Mangalanathan, U. M., Tramm, T., Mahmood, F., Novak, I., & Gehl, J. (2017). Normal and malignant cells exhibit differential responses to calcium electroporation. Cancer Research, 77(16), 4389–4401.

    Article  CAS  PubMed  Google Scholar 

  6. Frandsen, S. K., Gissel, H., Hojman, P., Eriksena, J., & Gehl, J. (2014). Calcium electroporation in three cell lines: a comparison of bleomycin and calcium, calcium compounds, and pulsing conditions. Biochimica et Biophysica Acta, 1840(3), 1204–1208.

    Article  CAS  PubMed  Google Scholar 

  7. Potter, H. (2003). Transfection by electroporation. Current Protocols in Molecular Biology chapter 9, unit 93.

  8. Kim, H. B., Lee, S., Shen, Y., Ryu, P.-D., Lee, Y., Chung, J. H., Sung, C. K., & Baik, K. Y. (2019). Physicochemical factors that affect electroporation of lung cancer and normal cell lines. Biochemical and Biophysical Research Communications, 517, 703e708.

    Google Scholar 

  9. Shagoshtasbi, H., Deng, P., & Lee, Y. K. (2015). A nonlinear size-dependent equivalent circuit model for single-cell electroporation on microfluidic chips. Journal of Laboratory Automation, 20(4), 481–490.

    Article  CAS  PubMed  Google Scholar 

  10. Agarwal, A., Zudans, I., Weber, E. A., Olofsson, J., Orwar, O., & Weber, S. G. (2007). Effect of cell size and shape on single-cell electroporation. Analytical Chemistry, 79(10), 3589–3596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aiken, E. J., Kilberg, B. G., Yu, S., Hagness, S. C., & Booske, J. H. (2018). Ionomycin-induced changes in membrane potential alter electroporation outcomes in HL-60 cells. Biophysical Journal, 114(12), 2875–2886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kennedy, S. M., Aiken, E. J., Beres, K. A., Hahn, A. R., Kamin, S. J., Hagness, S. C., Booske, J. H., & Murphy, W. L. (2014). Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption. PLoS One, 9(3), e92528.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mahmoud, A. A., Zeina, A. N., Farah, M., & Tahir, A. R. (2018). Electrical characterization of normal and cancer cells. IEEE access, 6, 25979–25986.

    Article  Google Scholar 

  14. Kanduser, M., Sentjurc, M., & Miklavcic, D. (2006). Cell membrane fluidity related to electroporation and resealing. European Biophysics Journal, 35(3), 196–204.

    Article  PubMed  Google Scholar 

  15. van Uitert, I., Le Gac, S., & van den Berg, A. (2010). The influence of different membrane components on the electrical stability of bilayer lipid membranes. Biochimica et Biophysica Acta, 1798(1), 21–31.

    Article  PubMed  Google Scholar 

  16. Cemazar, M., Jarm, T., Miklavcic, D., Lebar, A. M., Ihan, A., Kopitar, N. A., & Sersa, G. (1998). Effect of electric-field intensity on electropermeabilization and electrosensitivity of various tumor-cell lines in vitro. Electro- and Magnetobiology, 17(2), 263–272.

    Article  Google Scholar 

  17. Gianulis, E. C., Labib, C., Saulis, G., Novickij, V., Pakhomova, O. N., & Pakhomov, A. G. (2017). Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types. Cellular and Molecular Life Sciences, 74(9), 1741–1754.

    Article  CAS  PubMed  Google Scholar 

  18. Goldmann, W. H. (2008). Actin: a molecular wire, an electrical cable. Cell Biology International, 32(7), 869–870.

    Article  PubMed  Google Scholar 

  19. Kanthou, C., Kranjc, S., Sersa, G., Tozer, G., Zupanic, A., & Cemazar, M. (2006). The endothelial cytoskeleton as a target of electroporation-based therapies. Molecular Cancer Therapeutics, 5(12), 3145–3152.

    Article  CAS  PubMed  Google Scholar 

  20. Pakhomov, A. G., Xiao, S., Pakhomova, O. N., Semenov, I., Kuipers, M. A., & Ibey, B. L. (2014). Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling. Bioelectrochemistry, 100, 88–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Deyou, X., Tang, L., Zeng, C., Wang, J., Luo, X., Yao, C., & Sun, C. (2011). Effect of actin cytoskeleton disruption on electric pulse induced apoptosis and electroporation in tumour cells. Cell Biology International, 35(2), 99–104.

    Article  Google Scholar 

  22. Thompson, G. L., Roth, C. Tolstykh, G. Kuipers, M. Ibey, B. L. (2013). Role of cytoskeleton and elastic moduli in cellular response to nanosecond pulsed electric fields, Proc. SPIE 8585, Terahertz and Ultrashort Electromagnetic Pulses for Biomedical Applications, 85850.

  23. Stacey, M., Fox, P., Buescher, S., & Kolb, J. (2011). Nanosecond pulsed electric field induced cytoskeleton, nuclear membrane and telomere damage adversely impact cell survival. Bioelectrochemistry, 82(2), 131–134.

    Article  CAS  PubMed  Google Scholar 

  24. Blangero, C., Rols, M. P., & Teissie, J. (1989). Cytoskeletal reorganization during electric-field-induced fusion of Chinese hamster ovary cells grown in monolayers. Biochimica et Biophysica Acta, 981(2), 295–302.

    Article  CAS  PubMed  Google Scholar 

  25. Teissie, J., & Rols, M. P. (1994). Manipulation of cell cytoskeleton affects the lifetime of cell membrane electropermeabilization. Annals of the New York Academy of Sciences, 720, 98–110.

    Article  CAS  PubMed  Google Scholar 

  26. Perrier, D. L., Vahid, A., Kathavi, V., Stam, L., Rems, L., Mulla, Y., Muralidharan, A., Koenderink, G. H., Kreutzer, M. T., & Boukany, P. E. (2019). Response of an actin network in vesicles under electric pulses. Scientific Reports, 9(1), 8151.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Choi, Y. S., Kim, H. B., Chung, J., Kim, H. S., Yi, J. H., & Park, J. K. (2010). Preclinical analysis of irreversible electroporation on rat liver tissues using a microfabricated electroporator. Tissue Engineering Part C Methods, 16(6), 1245–1253.

    Article  PubMed  Google Scholar 

  28. Domke, J., & Radmacher, M. (1989). Measuring the elastic properties of thin polymer films with the AFM. Langmuir, 14(12), 3320–3325.

    Article  Google Scholar 

  29. Hernández, J. A., & Chifflet, S. (2000). Electrogenic properties of the sodium pump in a dynamic model of membrane transport. The Journal of Membrane Biology, 176(1), 41–52.

    Article  PubMed  Google Scholar 

  30. Strickholm, A. (1981). Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Biophys J., 35(3).

  31. Schoenbach, K. H., Stephen, J., Ravindra, P., Juergen, F., Richard, N., Christopher, O., Andrei, P., Miichael, S., James, S., Jody, A., Shu, X., Stephen, J., Peter, F., & Stehpen, B. (2007). Bioelectric effects of intense nanosecond pulses. IEEE Transactions on Dielectrics and Electrical Insulation, 14(5), 1088–1109.

    Article  CAS  Google Scholar 

  32. Xiao, D., Tang, L., Zeng, C., Wang, J., Luo, X., Yao, C., & Sun, C. (2011). Effect of actin cytoskeleton disruption on electric pulse-induced apoptosis and electroporation in tumour cells. Cell Biology International, 35(2), 99–104.

    Article  PubMed  Google Scholar 

  33. Stevenson, B. R., & Begg, D. A. (1994). Concentration-dependent effects of cytochalasin d on tight junctions and actin filaments in MDCK epithelial cells. Journal of Cell Science, 107, 367–375.

    CAS  PubMed  Google Scholar 

  34. Kanzo, S. (2015). Improving physical methods of cell permeabilization by reducing plasma membrane stiffness in HeLa cells. Thesis, McGill University.

  35. Frey, W., White, J. A., Price, R. O., Blackmore, P. F., Joshi, R. P., Nuccitelli, R., Beebe, S. J., Schoenbach, K. H., & Kolb, J. F. (2006). Plasma membrane voltage changes during nanosecond pulsed electric field exposure. Biophysical Journal, 90(10), 3608–3615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kanduser, M., & Miklavcic, D. (2009). Electroporation in biological cell and tissue: an overview. Food Engineering Series, 1–37.

  37. Marszalek, P., Liu, D., & Tsong, T. (1990). Schwan equation and transmembrane potential induced by altering electric field. Biophysical Journal, 58(4), 1053–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grosse, C., & Schwan, H. (1992). Cellular membrane potentials induced by altering fields. Biophysical Journal, 63(6), 1632–1642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Teissié, J., & Rols, M. (1993). An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophysical Journal, 65(1), 409–413.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Veech, R., Kashiwaya, Y., & King, M. (1995). The resting membrane potential of cells are measures of electrical work, not of ionic currents. Integrative Physiological and Behavioral Science, 30(4), 283–307.

    Article  CAS  PubMed  Google Scholar 

  41. Barrau, C., Teissie, J., & Gabriel, B. (2004). Osmotically induced membrane fusion facilitates the triggering of living cell electroporation. Bioelectrochemistry, 63(1–2), 327–332.

    Article  CAS  PubMed  Google Scholar 

  42. Djuzenova, C. S., Zimmermann, U., Frank, H., Sukhorukov, V. L., Richter, E., & Fuhr, G. (1996). Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells. Biochimica et Biophysica Acta, 1284(2), 143–152.

    Article  PubMed  Google Scholar 

  43. Saunders, J. A., Smith, C. R., & Kaper, J. M. (1989). Effects of electroporation pulse wave on the incorporation of viral RNA into tobacco protoplasts. Biotechniques, 7(10), 1124–1131.

    CAS  PubMed  Google Scholar 

  44. Chiara, C., Fels, J., Liashkovich, I., Kliche, K., Jeggle, P., Kusche-Vihrog, K., & Oberleithner, H. (2011). Membrane potential depolarization decreases the stiffness of vascular endothelial cells. Journal of Cell Science, 124(Pt 11), 1936–1942.

    Google Scholar 

  45. Oberleithner, H., Callies, C., Kusche-Vihrog, K., Schillers, H., Shahin, V., Riethmüller, C., Macgregor, G. A., & de Wardener, H. E. (2009). Potassium softens vascular endothelium and increases nitric oxide release. Proceedings of the National Academy of Sciences, 106(8), 2829–2834.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of SMEs and Startups (grant numbers S2459501) (Korea) and supported by Kwangwoon University 2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang Kyu Sung or Ku Youn Baik.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.B., Lee, S., Chung, J.H. et al. Effects of Actin Cytoskeleton Disruption on Electroporation In Vitro. Appl Biochem Biotechnol 191, 1545–1561 (2020). https://doi.org/10.1007/s12010-020-03271-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03271-4

Keywords

Navigation