Skip to main content
Log in

Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Plant molecular breeding is expected to give significant gains in cultivar development through development and utilization of suitable molecular marker systems for genetic diversity analysis, rapid DNA fingerprinting, identification of true hybrids, trait mapping and marker-assisted selection. Transposable elements (TEs) are the most abundant component in a genome and being used as genetic markers in the plant molecular breeding. Here, we review on the high copious transposable element belonging to class-II DNA TEs called “miniature inverted-repeat transposable elements” (MITEs). MITEs are ubiquitous, short and non-autonomous DNA transposable elements which have a tendency to insert into genes and genic regions have paved a way for the development of functional DNA marker systems in plant genomes. This review summarises the characteristics of MITEs, principles and methodologies for development of MITEs based DNA markers, bioinformatics tools and resources for plant MITE discovery and their utilization in crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Feschotte C, Zhang X, Wessler SR (2002) Miniature inverted-repeat transposable elements and their relationship to established DNA transposons. In: Mobile DNA II American Society of Microbiology 1147–1158.

  2. Bureau TE, Wessler SR (1992) Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4:1283–1294. https://doi.org/10.2307/3869414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Feschotte C, Mouchès C (2000) Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo- like DNA transposon. Mol Biol Evol 17:730–737. https://doi.org/10.1093/oxfordjournals.molbev.a026351

    Article  CAS  PubMed  Google Scholar 

  4. Jiang N, Bao Z, Zhang X et al (2003) An active DNA transposon family in rice. Nature 421:163–167. https://doi.org/10.1038/nature01214

    Article  CAS  PubMed  Google Scholar 

  5. Yang G, Nagel DH, Feschotte C (2009) Tuned for transposition: Molecular determinants underlying the hyperactivity of a stowaway MITE. Science 325:1391–1394. https://doi.org/10.1126/science.1175688

    Article  CAS  PubMed  Google Scholar 

  6. Chen J, Lu L, Benjamin J et al (2019) Tracking the origin of two genetic components associated with transposable element bursts in domesticated rice. Nat Commun 10:641. https://doi.org/10.1038/s41467-019-08451-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fattash I, Rooke R, Wong A et al (2013) Miniature inverted-repeat transposable elements: discovery, distribution, and activity. Genome 56:475–486. https://doi.org/10.1139/gen-2012-0174

    Article  CAS  PubMed  Google Scholar 

  8. Jiang N, Feschotte C, Zhang X, Wessler SR (2004) Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol 7:115–119

    Article  CAS  Google Scholar 

  9. Casacuberta E, Casacuberta JM, Puigdomènech P, Monfort A (1998) Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements. Plant J 16:79–85. https://doi.org/10.1046/j.1365-313X.1998.00267.x

    Article  CAS  PubMed  Google Scholar 

  10. Patel M, Jung S, Moore K et al (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1492–1502. https://doi.org/10.1007/s00122-004-1590-3

    Article  CAS  PubMed  Google Scholar 

  11. Yaakov B, Ceylan E, Domb K, Kashkush K (2012) Marker utility of miniature inverted-repeat transposable elements for wheat biodiversity and evolution. Theor Appl Genet 124:1365–1373. https://doi.org/10.1007/s00122-012-1793-y

    Article  CAS  PubMed  Google Scholar 

  12. McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801. https://doi.org/10.1126/science.15739260

    Article  CAS  PubMed  Google Scholar 

  13. Naito K, Zhang F, Tsukiyama T et al (2009) Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461:1130–1134. https://doi.org/10.1038/nature08479

    Article  CAS  PubMed  Google Scholar 

  14. Shan X, Liu Z, Dong Z et al (2005) Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.). Mol Biol Evol. 22:976–990. https://doi.org/10.1093/molbev/msi082

    Article  CAS  PubMed  Google Scholar 

  15. Kikuchi K, Terauchi K, Wada M, Hirano H-Y (2003) The plant MITE mPing is mobilized in anther culture. Nature 421:167–170. https://doi.org/10.1038/nature01218

    Article  CAS  PubMed  Google Scholar 

  16. Shirasawa K, Hirakawa H, Tabata S et al (2012) Characterization of active miniature inverted-repeat transposable elements in the peanut genome. Theor Appl Genet 124:1429–1438. https://doi.org/10.1007/s00122-012-1798-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakazaki T, Okumoto Y, Horibata A et al (2003) Mobilization of a transposon in the rice genome. Nature 421:170–172. https://doi.org/10.1038/nature01219

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Q, Arbuckle J, Wessler SR (2000) Recent, extensive, and preferential insertion of members of the miniature inverted-repeat transposable element family Heartbreaker into genic regions of maize. Proc Natl Acad Sci 97:1160–1165. https://doi.org/10.1073/pnas.97.3.1160

    Article  CAS  PubMed  Google Scholar 

  19. Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25:169–179

    Article  CAS  Google Scholar 

  20. Naito K, Cho E, Yang G et al (2006) Dramatic amplification of a rice transposable element during recent domestication. Proc Natl Acad Sci 103:17620–17625. https://doi.org/10.1073/pnas.0605421103

    Article  CAS  PubMed  Google Scholar 

  21. Liu Y, Tahir UlQamar M, Feng JW et al (2019) Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species. BMC Plant Biol 19:140. https://doi.org/10.1186/s12870-019-1757-3

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sampath P, Yang T-J (2014) Miniature inverted-repeat transposable elements (MITEs) as valuable genomic resources for the evolution and breeding for Brassica crops. Plant Breed Biotech 2:322–333. https://doi.org/10.9787/PBB.2014.2.4.322

    Article  Google Scholar 

  23. Boutanaev AM, Osbourn AE (2018) Multigenome analysis implicates miniature inverted-repeat transposable elements (MITEs) in metabolic diversification in eudicots. Proc Natl Acad Sci 115:E6650–E6658. https://doi.org/10.1073/pnas.1721318115

    Article  CAS  PubMed  Google Scholar 

  24. Guo C, Spinelli M, Ye C et al (2017) Genome-wide comparative analysis of miniature inverted repeat transposable elements in 19 Arabidopsis thaliana ecotype accessions. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-02855-1

    Article  CAS  Google Scholar 

  25. Jiang N (2001) Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell Online 13:2553–2564. https://doi.org/10.1105/tpc.13.112553

    Article  CAS  Google Scholar 

  26. Casa AM, Brouwer C, Nagel A et al (2000) The MITE family Heartbreaker (Hbr): molecular markers in maize. Proc Natl Acad Sci 97:10083–10089. https://doi.org/10.1073/pnas.97.18.10083

    Article  CAS  PubMed  Google Scholar 

  27. Hake AA, Shirasawa K, Yadawad A et al (2017) Identification of transposable element markers associated with yield and quality traits from an association panel of independent mutants in peanut (Arachis hypogaea L.). Euphytica 213:283. https://doi.org/10.1007/s10681-017-2070-6

    Article  CAS  Google Scholar 

  28. Komori T, Nitta N (2003) High frequency of sequence polymorphism in rice MITEs and application to efficient development of PCR-based markers. Breed Sci 53:85–92. https://doi.org/10.1270/jsbbs.53.85

    Article  CAS  Google Scholar 

  29. Monden Y, Naito K, Okumoto Y et al (2009) High potential of a transposon mPing as a marker system in japonica x japonica cross in rice. DNA Res 16:131–140. https://doi.org/10.1093/dnares/dsp004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hake AA, Bhat RS (2017) Utility of AhTE markers for genetic and genomic studies in groundnut (Arachis hypogaea L.). Int J Curr Microbiol Appl Sci 6:2051–2060

    Article  Google Scholar 

  31. Vitte C, Fustier M-A, Alix K, Tenaillon MI (2014) The bright side of transposons in crop evolution. Brief Funct Genom 13:276–295. https://doi.org/10.1093/bfgp/elu002

    Article  Google Scholar 

  32. Bhattacharyya MK, Smith AM, Ellis THN et al (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60:115–122. https://doi.org/10.1016/0092-8674(90)90721-P

    Article  CAS  PubMed  Google Scholar 

  33. Castelletti S, Tuberosa R, Pindo M, Salvi S (2014) A MITE transposon insertion is associated with differential methylation at the maize flowering time QTL Vgt1. G3 4:805–812. https://doi.org/10.1534/g3.114.010686

    Article  CAS  PubMed  Google Scholar 

  34. Zerjal T, Rousselet A, Mhiri C et al (2012) Maize genetic diversity and association mapping using transposable element insertion polymorphisms. Theor Appl Genet 124:1521–1537. https://doi.org/10.1007/s00122-012-1807-9

    Article  CAS  PubMed  Google Scholar 

  35. Magalhaes JV, Liu J, Guimarães CT et al (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet. 39:1156. https://doi.org/10.1038/ng2074

    Article  CAS  PubMed  Google Scholar 

  36. Momose M, Abe Y, Ozeki Y (2010) Miniature inverted-repeat transposable elements of Stowaway are active in potato. Genetics 186:59–66. https://doi.org/10.1534/genetics.110.117606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nishihara M, Hikage T, Yamada E, Nakatsuka T (2011) A single-base substitution suppresses flower color mutation caused by a novel miniature inverted-repeat transposable element in gentian. Mol Genet Genomics 286:371–382. https://doi.org/10.1007/s00438-011-0652-x

    Article  CAS  PubMed  Google Scholar 

  38. Teraishi M, Okumoto Y, Hirochika H et al (1999) Identification of a mutable slender glume gene in rice (Oryza sativa L.). Mol Gen Genet 261:487–494. https://doi.org/10.1007/s004380050992

    Article  CAS  PubMed  Google Scholar 

  39. Li J, Wang Z, Peng H, Liu Z (2014) A MITE insertion into the 3′-UTR regulates the transcription of TaHSP16. 9 in common wheat. Crop J 2:381–387. https://doi.org/10.1016/j.cj.2014.07.001

    Article  Google Scholar 

  40. Mao H, Wang H, Liu S et al (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326. https://doi.org/10.1038/ncomms9326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen J, Liu J, Xie K et al (2017) Translational repression by a miniature inverted-repeat transposable element in the 3′ untranslated region. Nat Commun 8:14651. https://doi.org/10.1038/ncomms14651

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lu C, Chen J, Zhang Y et al (2012) Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. MolBiolEvol 29:1005–1017. https://doi.org/10.1093/molbev/msr282

    Article  CAS  Google Scholar 

  43. Chen J, Lu C, Zhang Y, Kuang H (2012) Miniature inverted-repeat transposable elements (MITEs) in rice were originated and amplified predominantly after the divergence of Oryza and Brachypodium and contributed considerable diversity to the species. Mob Genet Elements 2:127–132. https://doi.org/10.4161/mge.20773

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang H, Tao Z, Hong H et al (2016) Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nat Plants 2:16016. https://doi.org/10.1038/NPLANTS.2016.16

    Article  CAS  PubMed  Google Scholar 

  45. Xianwei S, Zhang X, Sun J, Cao X (2015) Epigenetic mutation of RAV6 affects leaf angle and seed size in rice. Plant Physiol 169:2118–2128. https://doi.org/10.1104/pp.15.00836

    Article  CAS  Google Scholar 

  46. Wei L, Gu L, Song X et al (2014) Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc Natl Acad Sci USA 111:3877–3882. https://doi.org/10.1073/pnas.1318131111

    Article  CAS  PubMed  Google Scholar 

  47. Yan Y, Zhang Y, Yang K et al (2011) Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J 65:820–828. https://doi.org/10.1111/j.1365-313X.2010.04467.x

    Article  CAS  PubMed  Google Scholar 

  48. Xin Y, Ma B, Xiang Z et al (2019) Amplification of miniature inverted-repeat transposable elements and the associated impact on gene regulation and alternative splicing in mulberry (Morusno tabilis). Mob DNA 10:27. https://doi.org/10.1186/s13100-019-0169-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vaschetto LM (2016) Miniature inverted-repeat transposable elements (MITEs) and their effects on the regulation of major genes in cereal grass genomes. Mol Breed 36:30. https://doi.org/10.1007/s11032-016-0440-8

    Article  CAS  Google Scholar 

  50. Casa AM, Nagel A, Wessler SR (2004) MITE display. Methods MolBiol 260:175–188. https://doi.org/10.1385/1-59259-755-6:175

    Article  CAS  Google Scholar 

  51. Chang R-Y, O’Donoughue LS, Bureau TE (2001) Inter-MITE polymorphisms (IMP): a high throughput transposon-based genome mapping and fingerprinting approach. Theor Appl Genet 102:773–781. https://doi.org/10.1007/s001220051709

    Article  CAS  Google Scholar 

  52. Sampath P, Lee SC, Lee J et al (2013) Characterization of a new high copy stowaway family MITE, BRAMI-1 in Brassica genome. BMC Plant Biol 13:56. https://doi.org/10.1186/1471-2229-13-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Perumal S, Waminal N, Lee J et al (2016) Next-generation sequencing based transposon display to detect high-throughput insertion polymorphism markers in brassica. Plant Breed Biotechnol 4:285–296

    Article  Google Scholar 

  54. Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1–11. https://doi.org/10.1016/S0378-1119(03)00557-2

    Article  CAS  PubMed  Google Scholar 

  55. Gayathri M, Shirasawa K, Varshney RK et al (2018) Development of AhMITE1 markers through genome-wide analysis in peanut (Arachis hypogaea L.). BMC Res Notes 11:8–13. https://doi.org/10.1186/s13104-017-3121-8

    Article  CAS  Google Scholar 

  56. Shirasawa K, Koilkonda P, Aoki K et al (2012) Insilico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12:80. https://doi.org/10.1186/1471-2229-12-80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stelmach K, Macko-Podgórni A, Machaj G, Grzebelus D (2017) Miniature inverted repeat transposable element insertions provide a source of intron length polymorphism markers in the carrot (Daucuscarota L.). Front Plant Sci 8:725. https://doi.org/10.3389/FPLS.2017.00725

    Article  PubMed  PubMed Central  Google Scholar 

  58. Goerner-Potvin P, Bourque G (2018) Computational tools to unmask transposable elements. Nat Rev Genet 19:688–704. https://doi.org/10.1038/s41576-018-0050-x

    Article  CAS  PubMed  Google Scholar 

  59. Nussbaumer T, Martis MM, Roessner SK et al (2012) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res 41:D1144–D1151. https://doi.org/10.1093/nar/gks1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:11. https://doi.org/10.1186/s13100-015-0041-9

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hubley R, Finn RD, Clements J et al (2016) The Dfam database of repetitive DNA families. Nucleic Acids Res 44:D81–D89. https://doi.org/10.1093/nar/gkv1272

    Article  CAS  PubMed  Google Scholar 

  62. Wheeler TJ, Clements J, Eddy SR et al (2013) Dfam: a database of repetitive DNA based on profile hidden Markov models. Nucleic Acids Res 41:D70–D82. https://doi.org/10.1093/nar/gks1265

    Article  CAS  PubMed  Google Scholar 

  63. Chen J, Hu Q, Zhang Y et al (2014) P-MITE: a database for plant miniature inverted-repeat transposable elements. Nucleic Acids Res 42:D1176–1181. https://doi.org/10.1093/nar/gkt1000

    Article  CAS  PubMed  Google Scholar 

  64. Murukarthick J, Sampath P, Lee S et al (2014) BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species. BMC Res Notes 7:379. https://doi.org/10.1186/1756-0500-7-379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Crescente JM, Zavallo D, Helguera M, Vanzetti LS (2018) MITE Tracker: an accurate approach to identify miniature inverted-repeat transposable elements in large genomes. BMC Bioinform 19:348. https://doi.org/10.1186/s12859-018-2376-y

    Article  CAS  Google Scholar 

  66. Han Y, Wessler SR (2010) MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences. Nucleic Acids Res 38:e199–e199. https://doi.org/10.1093/nar/gkq862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hu J, Zheng Y, Shang X (2017) MiteFinder: A fast approach to identify miniature inverted-repeat transposable elements on a genome-wide scale. IEEE International Conference on Bioinformatics and Biomedicine: 164–168. https://doi.org/10.1109/BIBM.2017.8217644

  68. Yang G (2013) MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted repeat transposable elements. BMC Bioinform 14:186. https://doi.org/10.1186/1471-2105-14-186

    Article  Google Scholar 

  69. Ye C, Ji G, Liang C (2016) Detect MITE: a novel approach to detect miniature inverted repeat transposable elements in genomes. Sci Rep 6:19688. https://doi.org/10.1038/srep19688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fiston-Lavier AS, Barrón MG, Petrov DA, González J (2015) T-lex2: Genotyping, frequency estimation and re-annotation of transposable elements using single or pooled next-generation sequencing data. Nucleic Acids Res 43:e22–e22. https://doi.org/10.1093/nar/gku1250

    Article  CAS  PubMed  Google Scholar 

  71. Kang H, Zhu D, Lin R et al (2016) A novel method for identifying polymorphic transposable elements via scanning of high-throughput short reads. DNA Res 23:241–251. https://doi.org/10.1093/dnares/dsw011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kofler R, Gómez-Sánchez D, Schlötterer C (2016) PoPoolationTE2: comparative population genomics of transposable elements using pool-seq. MolBiolEvol 33:2759–2764. https://doi.org/10.1093/molbev/msw137

    Article  CAS  Google Scholar 

  73. Linheiro RS, Bergman CM (2012) Whole genome resequencing reveals natural target site preferences of transposable elements in Drosophila melanogaster. PLoS ONE 7:e30008. https://doi.org/10.1371/journal.pone.0030008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nelson MG, Linheiro RS, Bergman CM (2017) McClintock: an integrated pipeline for detecting transposable element insertions in Whole-Genome Shotgun sequencing data. Genes Genomes Genet 7:2763–2778. https://doi.org/10.1534/g3.117.043893

    Article  CAS  Google Scholar 

  75. Platzer A, Nizhynska V, Long Q (2012) TE-locate: a tool to locate and group transposable element occurrences using paired-end next-generation sequencing data. Biology 1:395–410. https://doi.org/10.3390/biology1020395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhuang J, Wang J, Theurkauf W, Weng Z (2014) TEMP: A computational method for analyzing transposable element polymorphism in populations. Nucleic Acids Res 42:6826–6838. https://doi.org/10.1093/nar/gku323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Glaszmann JC, Kilian B, Upadhyaya HD, Varshney RK (2010) Accessing genetic diversity for crop improvement. CurrOpin Plant Biol 13:167–173. https://doi.org/10.1016/j.pbi.2010.01.004

    Article  CAS  Google Scholar 

  78. Govindaraj M, Vetriventhan M, Srinivasan M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genet Res Int. https://doi.org/10.1155/2015/431487

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dudley J, Maroof M, Rufener G (1992) Molecular marker information and selection of parents in corn breeding programs. Crop Sci 32:301–304. https://doi.org/10.2135/cropsci1992.0011183X003200020002x

    Article  Google Scholar 

  80. Xing N, Fan C, Zhou Y (2014) Parental selection of hybrid breeding based on maternal and paternal inheritance of traits in rapeseed (Brassica napus L.). PLoS ONE 9:e103165. https://doi.org/10.1371/journal.pone.0103165

    Article  PubMed  PubMed Central  Google Scholar 

  81. Soni SK, Tiwari S, Newmah JT et al (2018) Prediction of hybrid performance in crop plants : molecular and recent approaches. Int J Curr Microbiol Appl Sci 7:98–108

    Article  CAS  Google Scholar 

  82. Sun S, Zhou Y, Chen J et al (2018) Extensive intraspecific gene order and gene structural variations between Mo17 and other maize genomes. Nat Genet 50:1289. https://doi.org/10.1038/s41588-018-0182-0

    Article  CAS  PubMed  Google Scholar 

  83. Buckler ES, Gaut BS, McMullen MD (2006) Molecular and functional diversity of maize. Curr Opin Plant Biol 9:172–176

    Article  CAS  Google Scholar 

  84. Fu H, Dooner HK (2002) Intraspecific violation of genetic colinearity and its implications in maize. Proc Natl Acad Sci USA 99:9573–9578. https://doi.org/10.1073/pnas.132259199

    Article  CAS  PubMed  Google Scholar 

  85. Hake AA, Shirasawa K, Yadawad A et al (2018) Genome-wide structural mutations among the lines resulting from genetic instability in peanut (Arachis hypogaea L.). Plant Gene 13:1–7. https://doi.org/10.1016/j.plgene2017.11.001

    Article  CAS  Google Scholar 

  86. Jiang N, Bao Z, Zhang X et al (2004) Pack-MULE transposable elements mediate gene evolution in plants. Nature 431:569. https://doi.org/10.1038/nature02953

    Article  CAS  PubMed  Google Scholar 

  87. Keidar-Friedman D, Bariah I, Kashkush K (2018) Genome-wide analyses of miniature inverted-repeat transposable elements reveals new insights into the evolution of the Triticum-Aegilops group. PLoS ONE 13:e0204972. https://doi.org/10.1371/journal.pone.0204972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lai J, Li Y, Messing J, Dooner HK (2005) Gene movement by Helitron transposons contributes to the haplotype variability of maize. Proc Natl Acad Sci USA 102:9068–9073. https://doi.org/10.1073/pnas.0502923102

    Article  CAS  PubMed  Google Scholar 

  89. Morgante M, Brunner S, Pea G et al (2005) Gene duplication and exon shuffling by helitron-like transposons generate intraspecies diversity in maize. Nat Genet 37:997. https://doi.org/10.1038/ng1615

    Article  CAS  PubMed  Google Scholar 

  90. Singh S, Nandha PS, Singh J (2017) Transposon-based genetic diversity assessment in wild and cultivated barley. Crop J 5:296–304. https://doi.org/10.1016/j.cj.2017.01.003

    Article  Google Scholar 

  91. Tang Y, Ma X, Zhao S et al (2019) Identification of an active miniature inverted-repeat transposable element in rice. Plant J 98:639–653. https://doi.org/10.1111/tpj.14260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wessler SR, Nagel A, Casa A (2008) Miniature inverted repeat transposable elements help create genomic diversity in maize and rice. Rice Genet 4:107–116

    Article  Google Scholar 

  93. Wicker T, Gundlach H, Spannagl M et al (2018) Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol 19:103. https://doi.org/10.1186/s13059-018-1479-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Amundsen K, Warnke S (2011) Species relationships in the genus Agrostis based on flow Cytometry and MITE-display molecular markers. Crop Sci 51:1224–1231. https://doi.org/10.2135/cropsci2010.09.0512

    Article  Google Scholar 

  95. Hong SM, Kwon SJ, Oh CS (2006) Diversity analysis of Japonica Rice using MITE-transposon display. Korean J Crop Sci 51:259–268. https://doi.org/10.1093/molbev/msr282

    Article  CAS  Google Scholar 

  96. Kavar T, Meglic V, Rozman L (2007) Diversity of Slovenian maize (Zea mays) populations by Hbr (MITE) markers and morphological traits. Rus J Genet 43:989–995. https://doi.org/10.1134/S1022795407090049

    Article  CAS  Google Scholar 

  97. Lyons M, Cardle L, Rostoks N et al (2008) Isolation, analysis and marker utility of novel miniature inverted repeat transposable elements from the barley genome. Mol Genet Genomics 280:275–285. https://doi.org/10.1007/s00438-008-0363-0

    Article  CAS  PubMed  Google Scholar 

  98. Macko A, Grzebelus D (2008) DcMaster transposon display markers as a tool for diversity evaluation of carrot breeding materials and for hybrid seed purity testing. J Appl Genet 49:33–39. https://doi.org/10.1007/BF03195246

    Article  PubMed  Google Scholar 

  99. Nakayama S (2012) Inter-MITE polymorphisms of a newly identified MITE show relationships among sugarcane (Saccharum) species. Genet Resour Crop Evol 59:1389–1396. https://doi.org/10.1007/s10722-011-9766-6

    Article  CAS  Google Scholar 

  100. Park KC, Kim NH, Cho YS et al (2003) Genetic variations of AA genome Oryza species measured by MITE-AFLP. Theor Appl Genet 107:203–209. https://doi.org/10.1007/s00122-003-1252-x

    Article  CAS  PubMed  Google Scholar 

  101. Weiss J, Mallona I, Gomez-di-Marco P (2012) Genotyping Antirrhinum commercial varieties using miniature inverted-repeat transposable elements (MITEs). SciHortic (Amsterdam) 144:161–167. https://doi.org/10.1016/j.scienta.2012.06.040

    Article  CAS  Google Scholar 

  102. Casa AM, Mitchell SE, Smith OS et al (2002) Evaluation of Hbr (MITE) markers for assessment of genetic relationships among maize (Zea mays L.) inbred lines. Theor Appl Genet 104:104–110. https://doi.org/10.1007/s001220200012

    Article  CAS  PubMed  Google Scholar 

  103. Bhat RS, Patil VU, Chandrashekar TM et al (2008) Recovering flanking sequence tags of a miniature inverted-repeat transposable element by thermal asymmetric interlaced-PCR in peanut. Curr Sci 95:452–453

    CAS  Google Scholar 

  104. Gowda MVC, Bhat RS, Motagi BN et al (2010) Association of high-frequency origin of late leaf spot resistant mutants with AhMITE1 transposition in peanut. Plant Breed 129:567–569. https://doi.org/10.1111/j.1439-0523.2009.01704.x

    Article  CAS  Google Scholar 

  105. Gowda MVC, Bhat RS, Sujay V et al (2011) Characterization of AhMITE1 transposition and its association with the mutational and evolutionary origin of botanical types in peanut (Arachis spp.). Plant Syst Evol 291:153–158. https://doi.org/10.1007/s00606-010-0373-3

    Article  Google Scholar 

  106. Kolekar RM, Sujay V, Shirasawa K et al (2016) QTL mapping for late leaf spot and rust resistance using an improved genetic map and extensive phenotypic data on a recombinant inbred line population in peanut (Arachis hypogaea L.). Euphytica 209:147–156. https://doi.org/10.1007/s10681-016-1651-0

    Article  CAS  Google Scholar 

  107. Leal-Bertioli SCM, Cavalcante U, Gouvea EG et al (2015) G3 5:1403–1413. https://doi.org/10.1534/g3.115.018796

    Article  CAS  PubMed  Google Scholar 

  108. Mondal S, Hande P, Badigannavar AM (2014) Identification of transposable element markers for a rust (Puccinia arachidis Speg.) resistance gene in cultivated peanut. J Phytopathol 162:548–552. https://doi.org/10.1111/jph.12220

    Article  CAS  Google Scholar 

  109. Venkatesh (2014) Association analysis for taxonomic traits using transposon specific markers (AhMITE1) in a mutant population of groundnut. MSc. Dissertation University of Agricultural Sciences, Dharwad, Karnataka, India

  110. Kamble VM (2014) Association analysis for yield related and foliar disease resistance using transposon specific markers in a mutant population of groundnut. University of Agricultural Sciences, Dharwad, Karnataka

    Google Scholar 

  111. Venkatesh BN, Vijaykumar A, Motagi B, Bhat R (2019) Single marker analysis using transposon specific markers (AhMITE1) for yield, foliar disease resistance and oil quality in a mutant population of groundnut (Arachis hypogaea L.). Int J Curr Microbiol Appl Sci 8:2376–2385

    CAS  Google Scholar 

  112. Nadeem MA, Nawaz MA, Shahid MQ et al (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Biotechnol Equip 32:261–285. https://doi.org/10.1080/13102818.2017.1400401

    Article  CAS  Google Scholar 

  113. Yuan Y, Bayer PE, Batley J, Edwards D (2017) Improvements in genomic technologies: application to crop genomics. Trends Biotechnol 35:547–558

    Article  CAS  Google Scholar 

  114. Liu J, Guyot R, Ming R (2018) Transposable Elements in the Pineapple Genome. Genetics and Genomics of Pineapple, 155–165. Springer, Cham.

  115. Lambert CA (2001) A novel marker technique: using miniature inverted-repeat transposable elements (MITEs) in combination with resistant gene analogues (RGAs). Doctoral dissertation, Stellenbosch University.

  116. Garrido-Cardenas JA, Mesa-Valle C, Manzano-Agugliaro F (2018) Trends in plant research using molecular markers. Planta 247:543–557

    Article  CAS  Google Scholar 

  117. Grzebelus D (2018) The functional impact of transposable elements on the diversity of plant genomes. Diversity 10:18. https://doi.org/10.3390/d10020018

    Article  CAS  Google Scholar 

  118. Bureau TE, Wessler SR (1994) Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell Online 6:907–916. https://doi.org/10.1105/tpc.6.6.907

    Article  CAS  Google Scholar 

  119. Surzycki SA, Belknap WR (1999) Characterization of repetitive DNA elements in Arabidopsis. J MolEvol 48:684–691. https://doi.org/10.1007/PL00006512

    Article  CAS  Google Scholar 

  120. Charrier B, Foucher F, Kondorosi E et al (1999) Bigfoot: a new family of MITE elements characterized from the Medicago genus. Plant J 18:431–441. https://doi.org/10.1046/j.1365-313X.1999.00469.x

    Article  CAS  PubMed  Google Scholar 

  121. Gierlb A, Saedler H, Peterson PA (1989) Maize transposable elements. Annu Rev Genet 23:71–85

    Article  Google Scholar 

  122. Smit. AFA, Hubley R, Green P (2013–2015) RepeatMasker Open-4.0 https://repeatmasker.org.

  123. Robb SMS, Lu L, Valencia E et al (2013) The use of relocate and unassembled short reads to produce high-resolution snapshots of transposable element generated diversity in rice. G3 3:949–957. https://doi.org/10.1534/g3.112.005348

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. L. Nadaf, S. A. Desai, Sampath Perumal, Spoorthi Nayak, Basavaraj Bagewadi and Ravikumar Hosmani for proofreading the manuscript, providing helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, Nandini, B. Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding. Mol Biol Rep 47, 3155–3167 (2020). https://doi.org/10.1007/s11033-020-05365-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05365-y

Keywords

Navigation