Skip to main content

Advertisement

Log in

Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The intricate physiology of many Central Nervous System (CNS) disorders points towards oxidative damages of neurons. Various studies have established that oxidative stress is a big threat to integrity of neurons. All the sections of central nervous system are exposed to free radicals and charged species formed during oxidative degradation of catecholamines and polyunsaturated fatty acids which are present abundantly in CNS. By products of other biochemical reactions also contribute to oxidative stress in central nervous system. If these charged species are not counter neutralized by antioxidants, it leads to neurodegenerative disorders like Alzheimer’s disease, Parkinson’s disease, Amyotropic lateral sclerosis, Multiple sclerosis, Spinal cord injury, Schizophrenia etc. The level of charged species and free radicals is found to be higher in neurodegenerative diseases than normal physiological condition and it is related to oxidative damages to neuronal cells. In many of such cases, use of antioxidants decreases oxidative stress and contribute to neuroprotection. This review intends to compile approach of managing oxidative stress in various neurodegenerative disorders. The perspective of this review is to study antioxidants and their role in neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Suzuki T, Yamamoto M (2015) Molecular basis of the Keap1–Nrf2 system. Free Radic Biol Med 88:93–100

    CAS  PubMed  Google Scholar 

  2. de Vries HE, Witte M, Hondius D, Rozemuller AJ, Drukarch B, Hoozemans J, van Horssen J (2008) Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic Biol Med 45(10):1375–1383

    PubMed  Google Scholar 

  3. Lyakhovich VV, Vavilin VA, Zenkov NK, Menshchikova EB (2006) Active defense under oxidative stress. The antioxidant responsive element. Biochemistry 71:962–974

    CAS  PubMed  Google Scholar 

  4. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38(3):357–366

    CAS  PubMed  Google Scholar 

  5. Wakabayashi N, Itoh K, Wakabayashi J, Motohashi H, Noda S, Takahashi S, Imakado S, Kotsuji T, Otsuka F, Roop DR, Harada T (2003) Keap1-null mutation leads to postnatal lethality due to constitutive Nrf2 activation. Nat Genet 35(3):238

    CAS  PubMed  Google Scholar 

  6. Surh YJ, Kundu JK, Na HK (2008) Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Plant Med 74(13):1526–1539

    CAS  Google Scholar 

  7. Bergamini CM, Gambetti S, Dondi A, Cervellati C (2004) Oxygen, reactive oxygen species and tissue damage. Curr Pharm Des 10(14):1611–1626

    CAS  PubMed  Google Scholar 

  8. Giles GI, Nasim MJ, Ali W, Jacob C (2017) The reactive sulfur species concept: 15 years on. Antioxidants 6(2):38

    PubMed Central  Google Scholar 

  9. Sedelnikova OA, Redon CE, Dickey JS, Nakamura AJ, Georgakilas AG, Bonner WM (2010) Role of oxidatively induced DNA lesions in human pathogenesis. Mutat Res 704:152–159

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dinkova-Kostova AT, Talalay P (2008) Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res 52(Suppl1):S128–S138 (5)

    PubMed  Google Scholar 

  11. Magesh S, Chen Y, Hu L Q (2012) Small molecule modulators of Keap1– Nrf2–ARE pathway as potential preventive and therapeutic agents. Med Res Rev 32:687–726

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Itoh K, Tong KI, Yamamoto M (2004) Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles. Free Radic Biol Med 36(10):1208–1213

    CAS  PubMed  Google Scholar 

  13. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD et al (1999) Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino terminal Neh2 domain. Genes Dev 13(1):76–86

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Oikawa D, Akai R, Tokuda M, Iwawaki T (2012) A transgenic mouse model for monitoring oxidative stress. Sci Rep 2:229

    PubMed  PubMed Central  Google Scholar 

  15. Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role of oxidative stress in neurodegenerative diseases. Exp Neurobiol 24(4):325–340

    PubMed  PubMed Central  Google Scholar 

  16. Garcia-Revilla J, Alonso-Bellido IM, Burguillos MA, Herrera AJ, Espinosa-Oliva AM, Ruiz R, Cruz-Hernandez L, Garcia-Dominguez I, Roca-Ceballos MA, Santiago M, Rodriguez-Gomez JA (2019) Reformulating pro-oxidant microglia in neurodegeneration. J Clin Med 8(10):1719

    CAS  PubMed Central  Google Scholar 

  17. Solleiro-Villavicencio H, Rivas-Arancibia S (2018) Effect of chronic oxidative stress on neuroinflammatory response mediated by CD4 + T cells in neurodegenerative diseases. Front Cell Neurosci 12:114

    PubMed  PubMed Central  Google Scholar 

  18. Carvalho C, Moreira PI (2018) Oxidative stress: a major player in cerebrovascular alterations associated to neurodegenerative events. Front Physiol 9:806

    PubMed  PubMed Central  Google Scholar 

  19. Braak H, Braak E, Yilmazer D, de Vos RAI, Jansen ENH, Bohl J, Jellinger K (1994) Amygdala pathology in Parkinson’s disease. Acta Neuropathol 88(6):493–500. https://doi.org/10.1007/bf00296485

    Article  CAS  PubMed  Google Scholar 

  20. Rizor A, Pajarillo E, Johnson J, Aschner M, Lee E (2019) Astrocytic oxidative/nitrosative stress contributes to Parkinson’s disease pathogenesis: the dual role of reactive astrocytes. Antioxidants 8(8):265

    CAS  PubMed Central  Google Scholar 

  21. Milanese C, Cerri S, Ulusoy A, Gornati SV, Plat A, Gabriels S, Blandini F, Di Monte DA, Hoeijmakers JH, Hoeijmakers, Pier G, Mastroberardino (2018) Activation of the DNA damage response in vivo in synucleinopathy models of Parkinson’s disease. Cell Death Dis 9:818

    PubMed  PubMed Central  Google Scholar 

  22. Yang F, Wolk A, Håkansson N, Pedersen NL, Wirdefeldt K (2017) Dietary antioxidants and risk of Parkinson’s disease in two population-based cohorts. Mov Disord 32(11):1631–1636

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin H, Kanthasamy A, Ghosh A, Anantharam V, Kalyanaraman B, Kanthasamy AG (2014) Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta 1842(8):1282–1294

    CAS  PubMed  Google Scholar 

  24. Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40(8):959–975

    CAS  PubMed  Google Scholar 

  25. Kalita J, Misra UK, Singh LS, Tiwari A (2019) Oxidative stress in status epilepticus: a clinical-radiological correlation. Brain Res 1704:85–93

    CAS  PubMed  Google Scholar 

  26. Mishra V, Shuai B, Kodali M, Shetty GA, Hattiangady B, Rao X, Shetty AK (2015) Resveratrol treatment after status epilepticus restrains neurodegeneration and abnormal neurogenesis with suppression of oxidative stress and inflammation. Sci Rep 5:17807

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pearson-Smith JN, Liang LP, Rowley SD, Day BJ, Patel M (2017) Oxidative stress contributes to status epilepticus associated mortality. Neurochem Res 42(7):2024–2032

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Arimon M, Takeda S, Post K, Svirsky S, Hyman BT, Berezovska O (2015) Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol Dis 84:109–119

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhan R, Zhao M, Zhou T, Chen Y, Yu W, Zhao L, Zhang T, Wang H, Yang H, Jin Y, He Q (2018) Dapsone protects brain microvascular integrity from high-fat diet induced LDL oxidation. Cell Death Dis 9(6):683

    PubMed  PubMed Central  Google Scholar 

  30. Nagasaki Y (2018) Design and application of redox polymers for nanomedicine. Polym J 23:1

    Google Scholar 

  31. Liu D, Wen J, Liu J, Li L (1999) The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. FASEB J 13(15):2318–2328

    CAS  PubMed  Google Scholar 

  32. Szelechowski M, Amoedo N, Obre E, Leger C, Allard L, Bonneu M, Claverol S, Lacombe D, Oliet S, Chevallier S, Masson G (2018) Metabolic reprogramming in amyotrophic lateral sclerosis. Sci Rep 8(1):3953

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoshino H, Kimura A (2006) Investigation of the therapeutic effects of edaravone, a free radical scavenger, on amyotrophic lateral sclerosis (Phase II study). Amyotroph Latera Scler 7(4):247–251

    Google Scholar 

  34. Tsuburaya N, Homma K, Higuchi T, Balia A, Yamakoshi H, Shibata N, Nakamura S, Nakagawa H, Ikeda SI, Umezawa N, Kato N (2018) A small-molecule inhibitor of SOD1-Derlin-1 interaction ameliorates pathology in an ALS mouse model. Nat Commun 9(1):2668

    PubMed  PubMed Central  Google Scholar 

  35. Van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, Van der Valk P, De Vries HE (2008) Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med 45(12):1729–1737

    PubMed  Google Scholar 

  36. Faissner S, Mishra M, Kaushik DK, Wang J, Fan Y, Silva C, Rauw G, Metz L, Koch M, Yong VW (2017) Systematic screening of generic drugs for progressive multiple sclerosis identifies clomipramine as a promising therapeutic. Nat Commun 8(1):1990

    PubMed  PubMed Central  Google Scholar 

  37. Oliveira SR, Simao AN, Alfieri DF, Flauzino T, Kallaur AP, Mezzaroba L, Lozovoy MA, Sabino BS, Ferreira KP, Pereira WL, Kaimen-Maciel DR (2017) Vitamin D deficiency is associated with disability and disease progression in multiple sclerosis patients independently of oxidative and nitrosative stress. J Neurol Sci 381:213–219

    CAS  PubMed  Google Scholar 

  38. Hubler Z, Allimuthu D, Bederman I, Elitt MS, Madhavan M, Allan KC, Shick HE, Garrison E, Karl MT, Factor DC, Nevin ZS (2018) Accumulation of 8, 9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 25:1

    Google Scholar 

  39. Siriphorn A, Chompoopong S, Floyd CL (2010) 17β-Estradiol protects Schwann cells against H2O2‐induced cytotoxicity and increases transplanted Schwann cell survival in a cervical hemicontusion spinal cord injury model. J Neurochem 115(4):864–872

    CAS  PubMed  Google Scholar 

  40. Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y (2012) Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord 50(4):264

    CAS  PubMed  Google Scholar 

  41. Aoyama T, Hida K, Kuroda S, Seki T, Yano S, Shichinohe H, Iwasaki Y (2008) Edaravone (MCI-186) scavenges reactive oxygen species and ameliorates tissue damage in the murine spinal cord injury model. Neurol Med-chir 48(12):539–545

    Google Scholar 

  42. Luo J, Borgens R, Shi R (2002) Polyethylene glycol immediately repairs neuronal membranes and inhibits free radical production after acute spinal cord injury. J Neurochem 83(2):471–480

    CAS  PubMed  Google Scholar 

  43. Ilhan A, Koltuksuz U, Ozen S, Uz E, Ciralik H, Akyol O (1999) The effects of caffeic acid phenethyl ester (CAPE) on spinal cord ischemia/reperfusion injury in rabbits. Eur J Cardiothorac Surg 16(4):458–463

    CAS  PubMed  Google Scholar 

  44. Kochunov P, Hong LE (2014) Neurodevelopmental and neurodegenerative models of schizophrenia: white matter at the center stage. Schizophr Bull 40(4):721–728

    PubMed  PubMed Central  Google Scholar 

  45. Ranjekar PK, Hinge A, Hegde MV, Ghate M, Kale A, Sitasawad S, Wagh UV, Debsikdar VB, Mahadik SP (2003) Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res 121(2):109–122

    CAS  PubMed  Google Scholar 

  46. Dadheech G, Mishra S, Gautam S, Sharma P (2008) Evaluation of antioxidant deficit in schizophrenia. Indian J Psychiatry 50(1):16

    PubMed  PubMed Central  Google Scholar 

  47. Das T, Javadzadeh A, Dey A, Sabesan P, Théberge J, Radua J, Palaniyappan L (2018) Antioxidant defense in schizophrenia and bipolar disorder: a meta-analysis of MRS studies of anterior cingulate glutathione. Prog Neuro-Psychopharmacol Biol Psychiatry 91:94–102

    Google Scholar 

  48. Ustundag B, Atmaca M, Kirtas O, Selek S, Metin K, Tezcan E (2006) Total antioxidant response in patients with schizophrenia. J Neuropsychiatry Clin Neurosci 60(4):458–464

    CAS  Google Scholar 

  49. Magalhaes PV, Andreazza AC, Berk M, Kapczinski F, Dean O (2011) Antioxidant treatments for schizophrenia. Cochrane Database Syst Rev 1:1–3

    Google Scholar 

  50. Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Judd F, Katz F, Katz P, Ording-Jespersen S (2008) N-acetyl cysteine as a glutathione precursor for schizophrenia: a double-blind, randomized, placebo-controlled trial. Biol Psychiatry 64(5):361–368

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekta Singh.

Ethics declarations

Conflict of interest

This is not a funded work. The authors do not have any conflict of interest.

Ethical approval

This review article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, E., Devasahayam, G. Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection. Mol Biol Rep 47, 3133–3140 (2020). https://doi.org/10.1007/s11033-020-05354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05354-1

Keywords

Navigation