Skip to main content

Advertisement

Log in

Efficacy of mouthrinses with bovine milk and milk protein isolates to accumulate casein in the in situ pellicle

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

The adsorption of bovine milk caseins on the tooth surface might have a positive impact on the prevention of dental diseases. Therefore, the present study aimed to investigate the efficacy of mouthrinses with different types of bovine milk and milk protein isolates to accumulate caseins in the pellicle.

Materials/methods

An indirect enzyme-linked immunosorbent assay (ELISA) was established to quantify the amount of caseins adsorbed into the in situ pellicle. In situ pellicle samples were collected from 2 volunteers on ceramic specimens (A = 8 cm2). After 10 min of pellicle formation, different types of bovine milk, 3% micellar casein in synthetic milk ultrafiltrate (SMUF) or 3% non-micellar caseinate in SMUF, were used as mouthrinses for 10 min. The pellicle material was harvested after 30 min in situ and examined for caseins by the indirect ELISA. Selected pellicle samples were subjected to TEM analysis.

Results

All mouthrinses accumulated caseins in the in situ pellicle (2.0 ± 0.7–20 ± 1.7 μg/ml) that, under native conditions, expressed no casein signal. Micellar protein association increased the adsorption of casein into the pellicle. Milk homogenization also had an influence on the casein accumulation in the pellicle. TEM analysis confirmed the integration of micellar casein into the pellicle.

Conclusion

The mouthrinses altered the protein composition and the ultrastructure of the in situ pellicle to a different extent: bovine milk with 3.8% fat content and 3% micellar casein in SMUF being particularly effective.

Clinical relevance

The study provides interesting perspectives for innovative prevention strategies in dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Frencken JE, Sharma P, Stenhouse L et al (2017) Global epidemiology of dental caries and severe periodontitis - a comprehensive review. J Clin Periodontol 44(Suppl 18):S94–S105. https://doi.org/10.1111/jcpe.12677

    Article  PubMed  Google Scholar 

  2. Kensche A, Kirsch J, Mintert S, Enders F, Pötschke S, Basche S, König B, Hannig C, Hannig M (2017) Impact of customary fluoride rinsing solutions on the pellicle’s protective properties and bioadhesion in situ. Sci Rep 7:16584. https://doi.org/10.1038/s41598-017-16677-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lussi A, Carvalho TS (2015) The future of fluorides and other protective agents in erosion prevention. Caries Res 49(Suppl 1):18–29. https://doi.org/10.1159/000380886

    Article  PubMed  Google Scholar 

  4. Cochrane NJ, Reynolds EC (2012) Calcium phosphopeptides -- mechanisms of action and evidence for clinical efficacy. Adv Dent Res 24:41–47. https://doi.org/10.1177/0022034512454294

    Article  PubMed  Google Scholar 

  5. Ekambaram M, Mohd Said SNB, Yiu CKY (2017) A review of enamel remineralisation potential of calcium- and phosphate-based remineralisation systems. Oral Health Prev Dent 15:415–420. https://doi.org/10.3290/j.ohpd.a38779

    Article  PubMed  Google Scholar 

  6. Rehage M, Delius J, Hofmann T, Hannig M (2017) Oral astringent stimuli alter the enamel pellicle’s ultrastructure as revealed by electron microscopy. J Dent 63:21–29. https://doi.org/10.1016/j.jdent.2017.05.011

    Article  PubMed  Google Scholar 

  7. Weber M-T, Hannig M, Pötschke S, Höhne F, Hannig C (2015) Application of plant extracts for the prevention of dental erosion: an in situ/in vitro study. Caries Res 49:477–487. https://doi.org/10.1159/000431294

    Article  PubMed  Google Scholar 

  8. Cassiano LPS, Ventura TMS, Silva CMS, Leite AL, Magalhães AC, Pessan JP, Buzalaf MAR (2018) Protein profile of the acquired enamel pellicle after rinsing with whole milk, fat-free milk, and water: an in vivo study. Caries Res 52:288–296. https://doi.org/10.1159/000485390

    Article  PubMed  Google Scholar 

  9. Danielsson Niemi L, Hernell O, Johansson I (2009) Human milk compounds inhibiting adhesion of mutans streptococci to host ligand-coated hydroxyapatite in vitro. Caries Res 43:171–178. https://doi.org/10.1159/000213888

    Article  PubMed  Google Scholar 

  10. Johansson I, Esberg A, Eriksson L, Haworth S, Lif Holgerson P (2018) Self-reported bovine milk intake is associated with oral microbiota composition. PLoS One 13:e0193504. https://doi.org/10.1371/journal.pone.0193504

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dalgleish DG, Corredig M (2012) The structure of the casein micelle of milk and its changes during processing. Annu Rev Food Sci Technol 3:449–467. https://doi.org/10.1146/annurev-food-022811-101214

    Article  PubMed  Google Scholar 

  12. Holt C, Carver JA, Ecroyd H, Thorn DC (2013) Invited review: caseins and the casein micelle: their biological functions, structures, and behavior in foods. J Dairy Sci 96:6127–6146. https://doi.org/10.3168/jds.2013-6831

    Article  PubMed  Google Scholar 

  13. Vacca-Smith AM, Van Wuyckhuyse BC, Tabak LA, Bowen WH (1994) The effect of milk and casein proteins on the adherence of Streptococcus mutans to saliva-coated hydroxyapatite. Arch Oral Biol 39:1063–1069

    Article  Google Scholar 

  14. Wernersson J, Danielsson Niemi L, Einarson S, Hernell O, Johansson I (2006) Effects of human milk on adhesion of Streptococcus mutans to saliva-coated hydroxyapatite in vitro. Caries Res 40:412–417. https://doi.org/10.1159/000094287

    Article  PubMed  Google Scholar 

  15. Guggenheim B, Schmid R, Aeschlimann JM, Berrocal R, Neeser JR (1999) Powdered milk micellar casein prevents oral colonization by Streptococcus sobrinus and dental caries in rats: a basis for the caries-protective effect of dairy products. Caries Res 33:446–454. https://doi.org/10.1159/000016550

    Article  PubMed  Google Scholar 

  16. Schüpbach P, Neeser JR, Golliard M, Rouvet M, Guggenheim B (1996) Incorporation of caseinoglycomacropeptide and caseinophosphopeptide into the salivary pellicle inhibits adherence of mutans streptococci. J Dent Res 75:1779–1788. https://doi.org/10.1177/00220345960750101101

    Article  PubMed  Google Scholar 

  17. Magalhães AC, Levy FM, Souza BM, Cardoso CA, Cassiano LP, Pessan JP, Buzalaf MA (2014) Inhibition of tooth erosion by milk containing different fluoride concentrations: an in vitro study. J Dent 42:498–502. https://doi.org/10.1016/j.jdent.2013.12.009

    Article  PubMed  Google Scholar 

  18. Wiegand A, Attin T (2014) Randomised in situ trial on the effect of milk and CPP-ACP on dental erosion. J Dent 42:1210–1215. https://doi.org/10.1016/j.jdent.2014.07.009

    Article  PubMed  Google Scholar 

  19. Kensche A, Basche S, Bowen WH et al (2013) Fluorescence microscopic visualization of non cellular components during initial bioadhesion in situ. Arch Oral Biol 58:1271–1281. https://doi.org/10.1016/j.archoralbio.2013.07.006

    Article  PubMed  Google Scholar 

  20. Kratz F, Grass S, Umanskaya N et al (2015) Cleaning of biomaterial surfaces: protein removal by different solvents. Colloids Surf B: Biointerfaces 128:28–35. https://doi.org/10.1016/j.colsurfb.2015.02.016

    Article  PubMed  Google Scholar 

  21. Siqueira WL, Custodio W, McDonald EE (2012) New insights into the composition and functions of the acquired enamel pellicle. J Dent Res 91:1110–1118. https://doi.org/10.1177/0022034512462578

    Article  PubMed  Google Scholar 

  22. Lin AV (2015) Indirect ELISA. Methods Mol Biol 1318:51–59. https://doi.org/10.1007/978-1-4939-2742-5_5

    Article  PubMed  Google Scholar 

  23. Gugnani N, Pandit I, Srivastava N, Gupta M, Sharma M (2011) International Caries Detection and Assessment System (ICDAS): a new concept. Int J Clin Pediatr Dent 4:93–100. https://doi.org/10.5005/jp-journals-10005-1089

    Article  PubMed  Google Scholar 

  24. Bartlett D, Ganss C, Lussi A (2008) Basic Erosive Wear Examination (BEWE): a new scoring system for scientific and clinical needs. Clin Oral Investig 12:65–68. https://doi.org/10.1007/s00784-007-0181-5

    Article  PubMed Central  Google Scholar 

  25. Delius J, Trautmann S, Médard G, Kuster B, Hannig M, Hofmann T (2017) Label-free quantitative proteome analysis of the surface-bound salivary pellicle. Colloids Surf B: Biointerfaces 152:68–76. https://doi.org/10.1016/j.colsurfb.2017.01.005

    Article  PubMed  Google Scholar 

  26. Trautmann S, Barghash A, Fecher-Trost C et al (2018) Proteomic analysis of the initial oral pellicle in caries-active and caries-free individuals. Proteomics Clin Appl:e1800143. https://doi.org/10.1002/prca.201800143

  27. Duerasch A, Wissel J, Henle T (2018) Reassembling of alkali-treated casein micelles by microbial transglutaminase. J Agric Food Chem 66:11748–11756. https://doi.org/10.1021/acs.jafc.8b04000

    Article  PubMed  Google Scholar 

  28. Rupf S, Laczny CC, Galata V, Backes C, Keller A, Umanskaya N, Erol A, Tierling S, Lo Porto C, Walter J, Kirsch J, Hannig M, Hannig C (2018) Comparison of initial oral microbiomes of young adults with and without cavitated dentin caries lesions using an in situ biofilm model. Sci Rep 8:14010–14010. https://doi.org/10.1038/s41598-018-32361-x

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ekins R (1991) Immunoassay design and optimization. In: Price CP, Newman DJ (eds) Principles and practice of immunoassay. Palgrave Macmillan UK, London, pp 96–153

    Chapter  Google Scholar 

  30. Dalgleish DG (2011) On the structural models of bovine casein micelles—review and possible improvements. Soft Matter 7:2265–2272. https://doi.org/10.1039/C0SM00806K

    Article  Google Scholar 

  31. Marchin S, Putaux J-L, Pignon F, Léonil J (2007) Effects of the environmental factors on the casein micelle structure studied by cryo transmission electron microscopy and small-angle x-ray scattering/ultrasmall-angle x-ray scattering. J Chem Phys 126:045101. https://doi.org/10.1063/1.2409933

    Article  PubMed  Google Scholar 

  32. Algarni AA, Mussi MCM, Moffa EB, Lippert F, Zero DT, Siqueira WL, Hara AT (2015) The impact of stannous, fluoride ions and its combination on enamel pellicle proteome and dental erosion prevention. PLoS One 10:e0128196. https://doi.org/10.1371/journal.pone.0128196

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hannig M, Hannig C (2014) The pellicle and erosion. Monogr Oral Sci 25:206–214. https://doi.org/10.1159/000360376

    Article  PubMed  Google Scholar 

  34. Kensche A, Reich M, Kümmerer K, Hannig M, Hannig C (2013) Lipids in preventive dentistry. Clin Oral Investig 17:669–685. https://doi.org/10.1007/s00784-012-0835-9

    Article  PubMed  Google Scholar 

  35. Hannig C, Ruggeri A, Al-Khayer B et al (2008) Electron microscopic detection and activity of glucosyltransferase B, C, and D in the in situ formed pellicle. Arch Oral Biol 53:1003–1010. https://doi.org/10.1016/j.archoralbio.2008.04.005

    Article  PubMed  Google Scholar 

  36. Hannig M, Balz M (1999) Influence of in vivo formed salivary pellicle on enamel erosion. Caries Res 33:372–379. https://doi.org/10.1159/000016536

    Article  PubMed  Google Scholar 

  37. Gaspari M, Cuda G (2011) Nano LC-MS/MS: a robust setup for proteomic analysis. Methods Mol Biol 790:115–126. https://doi.org/10.1007/978-1-61779-319-6_9

    Article  PubMed  Google Scholar 

  38. Stumr F, Gabrovská D, Rysová J, Hanák P, Plicka J, Tomková K, Dvorská P, Cuhra P, Kubík M, Barsová S, Karsulínová L, Bulawová H, Brychta J, Yman IM (2010) ELISA kit for casein determination: interlaboratory study. J AOAC Int 93:676–682

    PubMed  Google Scholar 

  39. Castillo DS, Cassola A (2017) Novel sensitive monoclonal antibody based competitive enzyme-linked immunosorbent assay for the detection of raw and processed bovine beta-casein. PLoS One 12:e0182447. https://doi.org/10.1371/journal.pone.0182447

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pal S, Woodford K, Kukuljan S, Ho S (2015) Milk intolerance, beta-casein and lactose. Nutrients 7:7285–7297. https://doi.org/10.3390/nu7095339

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vacca Smith AM, Bowen WH (2000) The effects of milk and kappa-casein on salivary pellicle formed on hydroxyapatite discs in situ. Caries Res 34:88–93. https://doi.org/10.1159/000016558

    Article  PubMed  Google Scholar 

  42. Hannig M, Joiner A (2006) The structure, function and properties of the acquired pellicle. Monogr Oral Sci 19:29–64. https://doi.org/10.1159/000090585

    Article  PubMed  Google Scholar 

  43. Vitkov L, Hannig M, Nekrashevych Y, Krautgartner WD (2004) Supramolecular pellicle precursors. Eur J Oral Sci 112:320–325. https://doi.org/10.1111/j.1600-0722.2004.00138.x

    Article  PubMed  Google Scholar 

  44. Hannig C, Wasser M, Becker K, Hannig M, Huber K, Attin T (2006) Influence of different restorative materials on lysozyme and amylase activity of the salivary pellicle in situ. J Biomed Mater Res A 78:755–761. https://doi.org/10.1002/jbm.a.30758

    Article  PubMed  Google Scholar 

  45. Hannig M (1997) Transmission electron microscopic study of in vivo pellicle formation on dental restorative materials. Eur J Oral Sci 105:422–433. https://doi.org/10.1111/j.1600-0722.1997.tb02139.x

    Article  PubMed  Google Scholar 

  46. Hannig M, Khanafer AK, Hoth-Hannig W, al-Marrawi F, Açil Y (2005) Transmission electron microscopy comparison of methods for collecting in situ formed enamel pellicle. Clin Oral Investig 9:30–37. https://doi.org/10.1007/s00784-004-0284-1

    Article  PubMed  Google Scholar 

  47. Sharma R, Singh H, Taylor MW (1996) Composition and structure of fat globule surface layers in recombined milk. J Food Sci 61:28–32. https://doi.org/10.1111/j.1365-2621.1996.tb14719.x

    Article  Google Scholar 

  48. Hannig C, Wagenschwanz C, Pötschke S, Kümmerer K, Kensche A, Hoth-Hannig W, Hannig M (2012) Effect of safflower oil on the protective properties of the in situ formed salivary pellicle. Caries Res 46:496–506. https://doi.org/10.1159/000339924

    Article  PubMed  Google Scholar 

  49. Kensche A, Dürasch A, König B, Henle T, Hannig C, Hannig M (2019) Characterization of the in situ pellicle ultrastructure formed under the influence of bovine milk and milk protein isolates. Arch Oral Biol 104:133–140. https://doi.org/10.1016/j.archoralbio.2019.05.021

    Article  PubMed  Google Scholar 

Download references

Funding

This study has been funded by the German Research Foundation (HA 2718/20-1; KE 2186/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kensche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The performed study design was reviewed and approved by the ethics committee of the Medical Faculty, Technische Universität Dresden, Germany (vote: EK 147052013).

Informed written consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Kensche and S. Pötschke shared first authorship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kensche, A., Pötschke, S., Hannig, C. et al. Efficacy of mouthrinses with bovine milk and milk protein isolates to accumulate casein in the in situ pellicle. Clin Oral Invest 24, 3871–3880 (2020). https://doi.org/10.1007/s00784-020-03253-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03253-0

Keywords

Navigation