Skip to main content

Advertisement

Log in

One-step carbonization of poly(styrene/divinylbenzene) to fabricate N-doped porous carbon for high-performance supercapacitor electrode

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

A one-step carbonization strategy without KOH activation has been developed to fabricate N-doped porous carbon with a large specific surface area of 1520 m2 g−1, a relatively high nitrogen content of 6.13 wt%, abundant active sites, partial graphitization, and high conductivity. This exploration is based on poly(styrene/divinylbenzene) (p(St/DVB) foam prepared by high internal phase emulsion (HIPE) and with the loading of urea as the nitrogen source. The carbonization process was subsequently carried out at 800 °C to achieve the synthesis of N-doped porous carbon. The electrochemical properties of N-doped porous carbon were evaluated in 0.5 M H2SO4 and 1 M KOH aqueous electrolytes, respectively. In acidic medium, the obtained sample exhibits a high specific capacitance of 276 F g−1 at 1 A g−1 in the potential range of 0–1 V and 70.2% capacitance retention at 20 A g−1. Quite high stability with only 2.2% capacitance loss is confirmed through a 10,000-GCD-cycle at 10 A g−1. In contrast, in a base electrolyte, the N-doped porous carbon also shows excellent energy storage performance with a specific capacitance of 268 F g−1 at 1 A g−1 in the potential range of – 1 to 0 V along with capacitance retention of 67.2% at 20 A g−1. After 10,000 cycles tested at 10 A g–1, our sample still maintains 94.4% retention of initial capacitance. It is convinced that the microstructures result in excellent electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv. Sci. 4, 1600539 (2017)

    Article  CAS  Google Scholar 

  2. P. Liu, Y. Zhu, X. Gao, Y. Huang, Y. Wang, S. Qin, Y. Zhang, Rational construction of bowl-like MnO2 nanosheets with excellent electrochemical performance for supercapacitor electrodes. Chem. Eng. J. 350, 79–88 (2018)

    Article  CAS  Google Scholar 

  3. N. Wang, Z. Ma, M. Yao, J. Sun, W. Hu, Waste stainless steel mesh anodized under hydrothermal environment for flexible negative electrode of supercapacitor. J. Porous Mater. 26, 1489–1494 (2019)

    Article  CAS  Google Scholar 

  4. K. Liang, X. Tang, W. Hu, Y. Yang, Ultrafine V2O5 nanowires in 3D current collector for high performance supercapacitor. ChemElectroChem 3, 704–708 (2016)

    Article  CAS  Google Scholar 

  5. Y. Chen, H. Hu, N. Wang, B. Sun, M. Yao, W. Hu, Cu(I)/Cu(II) partially substituting the Co(II) of spinel Co3O4 nanowires with 3D interconnected architecture on carbon cloth for high-performance flexible solid-state supercapacitors. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2019.123536

    Article  Google Scholar 

  6. J. Wei, X. Li, H. Xue, J. Shao, R. Zhu, H. Pang, Hollow structural transition metal oxide for advanced supercapacitors. Adv. Mater. Interfaces 5, 1701509 (2018)

    Article  CAS  Google Scholar 

  7. X. Dong, H. Jin, R. Wang, J. Zhang, X. Feng, C. Yan, S. Chen, S. Wang, J. Wang, J. Lu, High volumetric capacitance, ultralong life supercapacitors enabled by waxberry-derived hierarchical porous carbon materials. Adv. Energy Mater. 8, 1702695 (2018)

    Article  CAS  Google Scholar 

  8. Z. Gao, C. Chen, J. Chang, L. Chen, P. Wang, D. Wu, F. Xu, K. Jiang, Porous Co3S4@Ni3S4 heterostructure arrays electrode with vertical electrons and ions channels for efficient hybrid supercapacitor. Chem. Eng. J. 343, 572–582 (2018)

    Article  CAS  Google Scholar 

  9. W.M. Qiao, Y. Song, H.Y. Seong, I. Mochida, Modification of commercial activated carbon through gasification by impregnated metal salts to develop mesoporous structures. New Carbon Mater. 20, 198–204 (2005)

    CAS  Google Scholar 

  10. M. Kim, P. Puthiaraj, Y. Qian, Y. Kim, S. Jang, S. Hwang, E. Na, W.-S. Ahn, S.E. Shim, High performance carbon supercapacitor electrodes derived from a triazine-based covalent organic polymer with regular porosity. Electrochim. Acta 284, 98–107 (2018)

    Article  CAS  Google Scholar 

  11. Y. Mateyshina, A. Ukhina, L. Brezhneva, N. Uvarov, Synthesis and electrochemical properties of nanoporous carbon electrode materials for supercapacitors. J. Alloys Compd. 707, 337–340 (2017)

    Article  CAS  Google Scholar 

  12. Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)

    Article  CAS  Google Scholar 

  13. Z. Xin, W. Fang, L. Zhao, H. Chen, X. He, W. Zhang, N-doped carbon foam constructed by liquid foam with hierarchical porous structure for supercapacitor. J. Porous Mater. 25, 1521–1529 (2018)

    Article  CAS  Google Scholar 

  14. B. Wang, Y. Wang, Y. Peng, X. Wang, J. Wang, J. Zhao, 3-dimensional interconnected framework of N-doped porous carbon based on sugarcane bagasse for application in supercapacitors and lithium ion batteries. J. Power Sources 390, 186–196 (2018)

    Article  CAS  Google Scholar 

  15. G.A. Ferrero, A.B. Fuertes, M. Sevilla, N-doped porous carbon capsules with tunable porosity for high-performance supercapacitors. J. Mater. Chem. A 3, 2914–2923 (2015)

    Article  CAS  Google Scholar 

  16. A. Desforges, H. Deleuze, O. Mondain-Monval, R. Backov, Palladium nanoparticle generation within microcellular polymeric foam and size dependence under synthetic conditions. Ind. Eng. Chem. Res. 44, 8521–8529 (2005)

    Article  CAS  Google Scholar 

  17. X. Qi, K. Huang, X. Wu, W. Zhao, H. Wang, Q. Zhuang, Z. Ju, Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 131, 79–85 (2018)

    Article  CAS  Google Scholar 

  18. Q. Zhang, K. Zhou, J. Lei, W. Hu, Nitrogen dual-doped porous carbon fiber: A binder-free and high-performance flexible anode for lithium ion batteries. Appl. Surf. Sci. 467–468, 992–999 (2019)

    Article  CAS  Google Scholar 

  19. D. Zhang, M. Han, Y. Li, B. Wang, K. Wang, Y. Wang, T. Yang, J. He, H. Feng, Fabrication of the nitrogen doped ordered porous carbon derived from amino-maltose with excellent capacitance performance. J. Porous Mater. 25, 29–35 (2018)

    Article  CAS  Google Scholar 

  20. P. Zhao, N. Wang, M. Yao, H. Ren, W. Hu, Hydrothermal electrodeposition incorporated with CVD-polymerisation to tune PPy@MnO2 interlinked core-shell nanowires on carbon fabric for flexible solid-state asymmetric supercapacitors. Chem. Eng. J. 380, 122488 (2020)

    Article  CAS  Google Scholar 

  21. X. Han, L. Sun, F. Wang, D. Sun, MOF-derived honeycomb-like N-doped carbon structures assembled from mesoporous nanosheets with superior performance in lithium-ion batteries. J. Mater. Chem. A 6, 18891–18897 (2018)

    Article  CAS  Google Scholar 

  22. X. Wei, X. Jiang, J. Wei, S. Gao, Functional groups and pore size distribution do matter to hierarchically porous carbons as high-rate-performance supercapacitors. Chem. Mater. 28, 445–458 (2016)

    Article  CAS  Google Scholar 

  23. L. Qiang, Z. Hu, Z. Li, Y. Yang, X. Wang, Y. Zhou, X. Zhang, W. Wang, Q. Wang, Buckwheat husk-derived hierarchical porous nitrogen-doped carbon materials for high-performance symmetric supercapacitor. J. Porous Mater. 26, 1217–1225 (2019)

    Article  CAS  Google Scholar 

  24. Y.-N. Sun, Z.-Y. Sui, X. Li, P.-W. Xiao, Z.-X. Wei, B.-H. Han, Nitrogen-doped porous carbons derived from polypyrrole-based aerogels for gas uptake and supercapacitors. ACS Appl. Nano Mater. 1, 609–616 (2018)

    Article  CAS  Google Scholar 

  25. N. Shcherban, S. Filonenko, P. Yaremov, V. Dyadyun, I. Bezverkhyy, V. Ilyin, Boron-doped nanoporous carbons as promising materials for supercapacitors and hydrogen storage. J. Mater. Sci. 52, 1523–1533 (2017)

    Article  CAS  Google Scholar 

  26. P. Zhao, M. Yao, Q. Zhang, N. Wang, W. Hu, S. Komarneni, Electrochemical behavior of representative electrode materials in artificial seawater for fabricating supercapacitors. Electrochim. Acta 318, 211–219 (2019)

    Article  CAS  Google Scholar 

  27. M. Yao, B. Sun, L. He, N. Wang, W. Hu, S. Komarneni, Self-assembled Ni3S2 nanosheets with mesoporous structure tightly held on Ni foam as a highly efficient and long-term electrocatalyst for water oxidation. ACS Sustain. Chem. Eng. 7, 5430–5439 (2019)

    Article  CAS  Google Scholar 

  28. J. Zhou, Z. Zhang, W. Xing, J. Yu, G. Han, W. Si, S. Zhuo, Nitrogen-doped hierarchical porous carbon materials prepared from meta-aminophenol formaldehyde resin for supercapacitor with high rate performance. Electrochim. Acta 153, 68–75 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by National Natural Science Foundation of China (Grant No. 51902041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ni Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Yao, Y., He, L. et al. One-step carbonization of poly(styrene/divinylbenzene) to fabricate N-doped porous carbon for high-performance supercapacitor electrode. J Porous Mater 27, 627–635 (2020). https://doi.org/10.1007/s10934-020-00874-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-020-00874-4

Keywords

Navigation