Skip to main content
Log in

Structure of the enterocyte transcytosis compartments during lipid absorption

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

In spite of tremendous progress in deciphering the molecular mechanisms involved in intracellular transport in cell culture and in the test tube, many aspects of this process in situ remain unclear. Here, we examined lipid transcytosis in enterocytes in adult rats. Apical clathrin-coated buds and the ER exit sites were not found. After starvation, the Golgi complex was in a non-transporting state and contained many vesicles, but no intercisternal connections and typical the cis-most and the trans-most cisternae. Following the addition of the lipids in the form of chyme, pre-chylomicrons (pre-ChMs) were initially found in the tubules of the smooth SER attached to the basolateral plasmalemma below the belt composed of adhesive junctions (AJ) and always connected with other cisternae. However, the ER exit sites were still absent. Pre-ChMs moved into the cis-most cisterna and were concentrated in cisternal distensions at the trans-side of the Golgi complex. This induced attachment of the cis-most and the trans-most cisternae to the Golgi complex. Post-Golgi carriers fused with the basolateral plasmalemma and delivered ChMs outside. Overloading of enterocytes with lipids resulted in an accumulation of lipid droplets, an increase of the diameter of ChMs, and shift of the Golgi complex to the transporting state with the formation of intercisternal connections, attachment of the cis-most and the trans-most cisternae and disappearance of vesicles. These data are discussed from the functional point of view. In spite of tremendous progress in deciphering the molecular mechanisms involved in intracellular transport in cell culture and in the test tube, many aspects of this process in situ remain unclear. Here, we examined lipid transcytosis in enterocytes in adult rats. Apical clathrin-coated buds and the ER exit sites were not found. After starvation, the Golgi complex was in a non-transporting state and contained many vesicles, but no intercisternal connections and typical the cis-most and the trans-most cisternae. Following the addition of the lipids in the form of chyme, pre-chylomicrons (pre-ChMs) were initially found in the tubules of the smooth SER attached to the basolateral plasmalemma below the belt composed of adhesive junctions (AJ) and always connected with other cisternae. However, the ER exit sites were still absent. Pre-ChMs moved into the cis-most cisterna and were concentrated in cisternal distensions at the trans-side of the Golgi complex. This induced attachment of the cis-most and the trans-most cisternae to the Golgi complex. Post-Golgi carriers fused with the basolateral plasmalemma and delivered ChMs outside. Overloading of enterocytes with lipids resulted in an accumulation of lipid droplets, an increase of the diameter of ChMs, and shift of the Golgi complex to the transporting state with the formation of intercisternal connections, attachment of the cis-most and the trans-most cisternae and disappearance of vesicles. These data are discussed from the functional point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

taken from the set of serial tomography images (images number 14, 17, 26, 51 and 63 from the set). AJs and actin filaments attached to them are coloured in red; actin bundles are coloured in green. The bundles attached to AJs are localized at the lateral areas of IDCs. These bundles could produce force, which contracts distended IDCs inducing movement of ChMs towards the basement membrane. (K) Protrusion (white arrow) of the dendritic cell (asterisk) within the basement membrane of enterocyte. (L) Pores in the enterocyte basement membrane. Scale bars: 2.5 µm (a); 270 nm (bj); 1.2 µm (k); 30 µm (l)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AJ:

Adhesive junction

APM:

Apical PM

Apo:

Apo-lipoprotein

BLPM:

Basolateral PM

ChM:

Chylomicron

CMC:

cis-Most cisterna

CLEM:

Correlative light-EM

EM:

Electron microscopy

ER:

Endoplasmic reticulum

ERES:

ER exit sites

FFA:

Free fatty acid

GC:

Golgi complex

GJ:

Gap junction

IDC:

Interdigitated contact

OTOTO:

Osmium-thiocarbohydrazide-osmium-thiocarbobydazide-osmium

PM:

Plasma membrane

pre-ChM:

Pre-chylomicron

SEM:

Scanning EM

SER:

Smooth ER

TJ:

Tight junction

TMC:

trans-Most cisterna

3DEM:

Three-dimensional EM

References

  • Bannykh SI, Rowe T, Balch WE (1996) The organization of endoplasmic reticulum export complexes. J Cell Biol 135:19–35

    Article  CAS  PubMed  Google Scholar 

  • Benito-Vicente A, Uribe KB, Jebari S, Galicia-Garcia U, Ostolaza H, Martin C (2018) Familial Hypercholesterolemia: The Most Frequent Cholesterol Metabolism Disorder Caused Disease. Int J Mol Sci 19:E3426

    Article  PubMed  CAS  Google Scholar 

  • Beznoussenko GV, Parashuraman S, Rizzo R, Polishchuk R, Martella O, Di Giandomenico D, Fusella A, Spaar A, Sallese M, Capestrano MG, Pavelka M, Vos MR, Rikers YG, Helms V, Mironov AA, Luini A (2014) Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae. eLife 27(3):2009.

  • Beznoussenko GV, Pilyugin SS, Geerts WJ, Kozlov MM, Burger KN, Luini A, Derganc J, Mironov AA (2015) Trans-membrane area asymmetry controls the shape of cellular organelles. Int J Mol Sci 16(3):5299–5333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beznoussenko GV, Ragnini-Wilson A, Wilson C, Mironov AA (2016) Three-dimensional and immune electron microscopic analysis of the secretory pathway in Saccharomyces cerevisiae. Histochem Cell Biol 146(5):515–527

    Article  CAS  PubMed  Google Scholar 

  • Black DD (2007) Development and physiological regulation of intestinal lipid absorption. I. Development of intestinal lipid absorption: cellular events in chylomicron assembly and secretion. Am J Physiol Gastrointest Liver Physiol 293:519–524

    Article  CAS  Google Scholar 

  • Bonfanti L, Mironov AA Jr, Martínez-Menárguez JA, Martella O, Fusella A, Baldassarre M, Buccione R, Geuze HJ, Mironov AA, Luini A (1998) Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Bozzola JJ, Russell LD (1992) Electron microscopy: principles and techniques for biologists. Jones & Bartlett, Boston, p 670

  • Buschmann RJ (1983) Morphometry of the small intestinal enterocytes of the fasted rat and the effects of colchicine. Cell Tissue Res 231:289–299

    Article  CAS  PubMed  Google Scholar 

  • Buschmann RJ, Manke DJ (1981a) Morphometric analysis of the membranes and organelles of small intestinal enterocytes I. Fasted hamster. J Ultrastruct Res 76:1–14

    Article  CAS  PubMed  Google Scholar 

  • Buschmann RJ, Manke DJ (1981b) Morphometric analysis of the membranes and organelles of small intestinal enterocytes. II lipid-fed hamster. J Ultrastruct Res 76:15–26

    Article  CAS  PubMed  Google Scholar 

  • Chang TY, Li BL, Chang CC, Urano Y (2009) Acyl-coenzyme A:cholesterol acyltransferases. Am J Physiol Endocrinol Metab 297(1):E1–9. https://doi.org/10.1152/ajpendo.90926.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen NJ, Rubin CE, Cheung MC, Albers JJ (1983) Ultrastructural immunolocalization of apolipoprotein B within human jejunal absorptive cells. J Lipid Res 24(9):1229–1242

    CAS  PubMed  Google Scholar 

  • Claude A (1970) Growth and differentiation of cytoplasmic membranes in the course of lipoprotein granule synthesis in the hepatic cell. I. Elaboration of elements of the Golgi complex. J Cell Biol 47:745–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloutier M, Gingras D, Bendayan M (2006) Internalization and transcytosis of pancreatic enzymes by the intestinal mucosa. J Histochem Cytochem 54:781–794

    Article  CAS  PubMed  Google Scholar 

  • Cutrona MB, Beznoussenko GV, Fusella A, Martella O, Moral P, Mironov AA (2013) Silencing of the mammalian Sar1 isoforms reveals COPII-independent protein sorting and transport. Traffic 14:691–708

    Article  CAS  PubMed  Google Scholar 

  • Dahan S, Ahluwalia JP, Wong L, Posner BI, Bergeron JJ (1994) Concentration of intracellular hepatic apolipoprotein E in Golgi apparatus saccular distensions and endosomes. J Cell Biol 127:1859–1869

    Article  CAS  PubMed  Google Scholar 

  • Drenckhahn D, Franz H (1986) Identification of actin-, alpha-actinin-, and vinculin-containing plaques at the lateral membrane of epithelial cells. J Cell Biol 102:1843–1852

    Article  CAS  PubMed  Google Scholar 

  • Fusella A, Micaroni M, Di Giandomenico D, Mironov AA, Beznoussenko GV (2013) Segregation of the Qb-SNAREs GS27 and GS28 into Golgi vesicles regulates intra-Golgi transport. Traffic 14:568–584

    Article  CAS  PubMed  Google Scholar 

  • Giammanco A, Cefalù AB, Noto D, Averna MR (2015) The pathophysiology of intestinal lipoprotein production. Front Physiol 6:61

    Article  PubMed  PubMed Central  Google Scholar 

  • Glaumann H, Bergstrand A, Ericsson JL (1975) Studies on the synthesis and intracellular transport of lipoprotein particles in rat liver. J Cell Biol 64:356–377

    Article  CAS  PubMed  Google Scholar 

  • Grefner NM, Gromova LV, Gruzdkov AA, Snigirevskaia ES, IaIu K (2006) Structural–functional analysis of diffusion in glucose absorption by rat small intestine enterocytes. Tsitologiia 48:355–363

    CAS  PubMed  Google Scholar 

  • Griffiths G (1993) Fine structure immunocytochemistry. Springer, Berlin, p 459

  • Hamilton RL, Wong JS, Cham CM, Nielsen LB, Young SG (1998) Chylomicron-sized lipid particles are formed in the setting of apolipoprotein B deficiency. J Lipid Res 39:1543–1557

    CAS  PubMed  Google Scholar 

  • Hayashi H, Fujimoto K, Cardelli JA, Nutting DF, Bergstedt S, Tso P (1990) Fat feeding increases size, but not number, of chylomicrons produced by small intestine. Am J Physiol 259:G709–G719

    Article  CAS  PubMed  Google Scholar 

  • He W, Ladinsky MS, Huey-Tubman KE, Jensen GJ, McIntosh JR, Björkman PJ (2008) FcRn-mediated antibody transport across epithelial cells revealed by electron tomography. Nature 455:542–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain MM (2014) Intestinal lipid absorption and lipoprotein formation. Curr Opin Lipidol 25:200–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karelina NR, Sesorova IS, Beznusenko GV, Shishlo VK, Kazakova TE, Mironov AA (2017) Ultrastructural basis for the process of lymph formation. Morfologiia 151:7–19

    Google Scholar 

  • Knowles BC, Weis VG, Yu S, Roland JT, Williams JA, Alvarado GS, Lapierre LA, Shub MD, Gao N, Goldenring JR (2015) Rab11a regulates syntaxin 3 localization and microvillus assembly in enterocytes. J Cell Sci 128:1617–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komuro T (1985) Fenestrations of the basal lamina of intestinal villi of the rat. Scanning and transmission electron microscopy. Cell Tissue Res 239:183–188

    Article  CAS  PubMed  Google Scholar 

  • Kreft ME, Di Giandomenico D, Beznoussenko GV, Resnik N, Mironov AA, Jezernik K (2010) Golgi apparatus fragmentation as a mechanism responsible for uniform delivery of uroplakins to the apical plasma membrane of uroepithelial cells. Biol Cell 102:593–607

    Article  CAS  PubMed  Google Scholar 

  • Krndija D, El Marjou F, Guirao B, Richon S, Leroy O, Bellaiche Y, Hannezo E, Matic VD (2019) Active cell migration is critical for steady-state epithelial turnover in the gut. Science 365:705–710

    Article  CAS  PubMed  Google Scholar 

  • Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA (1999) Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J Cell Biol 144:1135–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansbach CM 2nd, Siddiqi S (2016) Control of chylomicron export from the intestine. Am J Physiol Gastrointest Liver Physiol 310:G659–668

    Article  PubMed  Google Scholar 

  • Marra P, Salvatore L, Mironov A Jr, Di Campli A, Di Tullio G, Trucco A, Beznoussenko G, Mironov A, De Matteis MA (2007) The biogenesis of the Golgi ribbon: the roles of membrane input from the ER and of GM130. Mol Biol Cell 18:1595–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuura S, Tashiro Y (1979) Immuno-electron-microscopic studies of endoplasmic reticulum-Golgi relationships in the intracellular transport process of lipoprotein particles in rat hepatocytes. J Cell Sci 39:273–290

    CAS  PubMed  Google Scholar 

  • Mironov AA, Beznoussenko GV (2019) Models of intracellular transport: pros and cons. Front Cell Dev Biol 7:146

  • Mironov AA, Mironov AA Jr, Beznoussenko GV, Trucco A, Lupetti P, Smith JD, Geerts WJ, Koster AJ, Burger KN, Martone ME, Deerinck TJ, Ellisman MH, Luini A (2003) ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev Cell 5:583–594

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Colanzi A, Polishchuk RS, Beznoussenko GV, Mironov AA Jr, Fusella A, Di Tullio G, Silletta MG, Corda D, De Matteis MA, Luini A (2004) Dicumarol an inhibitor of ADP-ribosylation of CtBP3/BARS, fragments Golgi non-compact tubular zones and inhibits intra-Golgi transport. Eur J Cell Biol 83:263–279

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Sesorova IS, Seliverstova EV, Beznoussenko GV (2017) Different Golgi ultrastructure across species and tissues: Implications under functional and pathological conditions, and an attempt at classification. Tissue Cell 49:186–201

    Article  CAS  PubMed  Google Scholar 

  • Mironov AA, Dimov ID, Beznoussenko GV (2019) Role of intracellular transport in the centriole-dependent formation of golgi ribbon. Results Probl Cell Differ 67:49–79

    Article  CAS  PubMed  Google Scholar 

  • Mosevich TN, IaIu K, Ugolev AM (1987) Canalicular system of enterocytes at rest and its changes during lipid absorption. Tsitologiia 29:22–27

    CAS  PubMed  Google Scholar 

  • Noaillac-Depeyre J, Gas N (1974) Fat absorption by the enterocytes of the carp (Cyprinus carpio L.). Cell Tissue Res 155:353–365

    Article  CAS  PubMed  Google Scholar 

  • Ohsaki Y, Soltysik K, Fujimoto T (2017) The lipid droplet and the endoplasmic reticulum. Adv Exp Med Biol 997:111–120

    Article  CAS  PubMed  Google Scholar 

  • Pavelka M, Gangl A (1985) Effects of colchicine on the intestinal transport of endogenous lipid. Gastroenterology 84:544–555

    Article  Google Scholar 

  • Pavelka M, Roth J (2005) Functional ultrastructure Atlas of tissue biology and pathology. Springer, Wien, p 326.

  • Remmerie A, Scott CL (2018) Macrophages and lipid metabolism. Cell Immunol 330:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R, Granucci F, Kraehenbuhl JP, Ricciardi-Castagnoli P (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2:361–367

    Article  CAS  PubMed  Google Scholar 

  • Rhodin JA (1974) Histology: a text and atlas. Oxford University Press, New York, p 803

  • Sabesin SM, Frase S (1977) Electron microscopic studies of the assembly, intracellular transport, and secretion of chylomicrons by rat intestine. J Lipid Res 18:496–511

    CAS  PubMed  Google Scholar 

  • Santos AJ, Nogueira C, Ortega-Bellido M, Malhotra V (2013) TANGO1 and Mia2/cTAGE5 (TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J Cell Biol 213:343–354

    Article  CAS  Google Scholar 

  • Santos AJ, Nogueira C, Ortega-Bellido M, Malhotra V (2016) TANGO1 and Mia2/cTAGE5(TALI) cooperate to export bulky pre-chylomicrons/VLDLs from the endoplasmic reticulum. J Cell Biol 213:343–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schonfeld G, Bell E, Alpers DH (1978) Intestinal apoproteins during fat absorption. J Clin Invest 61:1539–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi S, Mansbach CM (2012) Phosphorylation of Sar1b protein releases liver fatty acid-binding protein from multiprotein complex in intestinal cytosol enabling it to bind to endoplasmic reticulum (ER) and bud the pre-chylomicron transport vesicle. J Biol Chem 287:10178–10188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi SA, Gorelick FS, Mahan JT, Mansbach CM (2003) COPII proteins are required for Golgi fusion but not for endoplasmic reticulum budding of the pre-chylomicron transport vesicle. J Cell Sci 116:415–427

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi S, Siddiqi SA, Mansbach CM (2010a) Sec24C is required for docking the prechylomicron transport vesicle with the Golgi. J Lipid Res 51:1093–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi S, Saleem U, Abumrad NA, Davidson NO, Storch J, Siddiqi SA, Mansbach CM (2010b) A novel multiprotein complex is required to generate the prechylomicron transport vesicle from intestinal ER. J Lipid Res 51:1918–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi S, Sheth A, Patel F, Barnes M, Mansbach CM 2nd (2013) Intestinal caveolin-1 is important for dietary fatty acid absorption. Biochim Biophys Acta 1831:1311–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skrzypek T, Valverde Piedra JL, Skrzypek H, Kazimierczak W, Biernat M, Zabielski R (2007) Gradual disappearance of vacuolated enterocytes in the small intestine of neonatal piglets. J Physiol Pharmacol 58:87–95

    PubMed  Google Scholar 

  • Slot JW, Posthuma G, Chang LY, Crapo JD, Geuze HJ (1989) Quantitative aspects of immunogold labeling in embedded and in nonembedded sections. Am J Anat 185:271–281

    Article  CAS  PubMed  Google Scholar 

  • Taatjes DJ, Roth J, Weinstein J, Paulson JC (1988) Post-Golgi apparatus localization and regional expression of rat intestinal sialyltransferase detected by immunoelectron microscopy with polypeptide epitope-purified antibody. J Biol Chem 263:6302–6309

    CAS  PubMed  Google Scholar 

  • Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol 15:397–410

    Article  CAS  PubMed  Google Scholar 

  • Tiwari S, Siddiqi SA (2012) Intracellular trafficking and secretion of VLDL. Arterioscler Thromb Vasc Biol 32:1079–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trucco A, Polishchuk RS, Martella O, Di Pentima A, Fusella A, Di Giandomenico D, San Pietro E, Beznoussenko GV, Polishchuk EV, Baldassarre M, Buccione R, Geerts WJ, Koster AJ, Burger KN, Mironov AA, Luini A (2004) Secretory traffic triggers the formation of tubular continuities across Golgi sub-compartments. Nat Cell Biol 6:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Tso P, Balint JA (1986) Formation and transport of chylomicrons by enterocytes to the lymphatics. Am J Physiol 250:G715–G726

    CAS  PubMed  Google Scholar 

  • Vriend RA, Geissinger HD (1980) An improved direct intermicroscopic (LM leads to SEM leads to TEM) correlative procedure for the examination of mammalian skeletal muscle. J Microsc 120:53–64

    Article  CAS  PubMed  Google Scholar 

  • Wild P, Kaech A, Schraner EM, Walser L, Ackermann M (2017) Endoplasmic reticulum-to-Golgi transitions upon herpes virus infection. Version 2. F1000Res 6:1804.

  • Yuldashev AYu, Parpiev AP, Khaledov I, Saliev NSh (1978) Cytophysiology of the absorption cycle in enterocytes. Fiziol Zh SSSR Im I M Sechenova 64:1240–1244

    CAS  Google Scholar 

  • Zhang F, Zarkada G, Han J, Li J, Dubrac A, Ola R, Genet G, Boyé K, Michon P, Künzel SE, Camporez JP, Singh AK, Fong GH, Simons M, Tso P, Fernández-Hernando C, Shulman GI, Sessa WC, Eichmann A (2018) Lacteal junction zippering protects against diet-induced obesity. Science 361:599–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank FIRC’s support of laboratory, INTAS (Project 99-4-1732), Telethon (E.1105), the Italian National Research Council (Convenzione CNR – Consorzio Mario Negri Sud to A.A.M.); FIRC (Italy) and Consorzio Mario Negri (Italy; to A.A.M.), Russian foundation of fundamental science (to I.V.S. and E.V.S.) for financial support. We acknowledge the Centre European of Nano-medicine (CEN Italy) for the possibility to use Tecnai 20 electron microscope; Dr. V. Sesorov for preparation of drawings, and Dr C. Wilson for discussion, critical suggestions and editing of the manuscript. We are especially grateful to our highly qualified reviewers, who have done a tremendous amount of work to improve our text, which without their work had no chance of being published.

Author information

Authors and Affiliations

Authors

Contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication. AM and GB designed the study and wrote the manuscript. IS participated in writing, made experiments and analyzed data. GB made electron microscopy. Others performed different experiments and approved the final version.

Corresponding authors

Correspondence to Galina V. Beznoussenko or Alexander A. Mironov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. This article does not contain any study with humans, which was performed by the authors.

Ethical approval

All the institutional and national guidelines for the care and use of laboratory animals were followed. All experiments were approved by the decision of the Academic Committee of Saint Petersburg State Paediatric Medical University no. 10 from 23 September 2017 and decision of ethic committee of Ivanovo State Medical Academy (№1 from 5/XII, 2018) and in accordance with the ethical and legal standards of Russian Federation mentioned in the Order No. 755 of the Ministry of Health of the USSR of 12 August 1977 and Institutional Guidelines (in agreement with the rules of the Institutional Animal Care and Bioethics Committees).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary file2 Figure S2. Structure of enterocytes after starvation (A) and during transcytosis of chylomicrons (B, C). (A) The thick (200-nm) Epon section of the enterocyte after rat starvation demonstrates the numerous tubules of the SER forming contacts with the BLPM. White arrows show tubules of the SER contacted with the BLPM which is situated below the adhesive junctions but above of the level at which the GC (asterisk) is usually visible. The near-plasmalemmal tubule of the SER (yellow arrow) is connected with the GER (red arrow). (A1) Enlargements of the area inside the white box in (D). (B, C) Serial sections of the GC after overloading of enterocyte with chyme. Disappearance (arrow) of the pores surrounding Golgi cisternal distensions. (D) Complicated ICD containing AJ inside (white arrows). Scale bars: 1000 nm (A); 300 nm (A1); 550 nm (B–D) (TIF 2931 kb)

Below is the link to the electronic supplementary material.

Supplementary file1 (PNG 213kb)

Supplementary file1 (TIF 2932kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sesorova, I.S., Karelina, N.R., Kazakova, T.E. et al. Structure of the enterocyte transcytosis compartments during lipid absorption. Histochem Cell Biol 153, 413–429 (2020). https://doi.org/10.1007/s00418-020-01851-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-020-01851-3

Keywords

Navigation