Skip to main content
Log in

Complementary doping of van der Waals materials through controlled intercalation for monolithically integrated electronics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Doping control has been a key challenge for electronic applications of van der Waals materials. Here, we demonstrate complementary doping of black phosphorus using controlled ionic intercalation to achieve monolithic building elements. We characterize the anisotropic electrical transport as a function of ion concentrations and report a widely tunable resistivity up to three orders of magnitude with characteristic concentration dependence corresponding to phase transitions during intercalation. As a further step, we develop both p-type and n-type field effect transistors as well as electrical diodes with high device stability and performance. In addition, enhanced charge mobility from 380 to 820 cm2/(V·s) with the intercalation process is observed and explained as the suppressed neutral impurity scattering based on our ab initio calculations. Our study provides a unique approach to atomically control the electrical properties of van der Waals materials, and may open up new opportunities in developing advanced electronics and physics platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lieber, C. M. Nanoscale science and technology: Building a big future from small things. MRS Bull.2003, 28, 486–491.

    Article  CAS  Google Scholar 

  2. Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science1998, 279, 208–211.

    Article  CAS  Google Scholar 

  3. Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science2001, 293, 1289–1292.

    Article  CAS  Google Scholar 

  4. Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature2001, 409, 66–69.

    Article  CAS  Google Scholar 

  5. Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science2001, 294, 1313–1317.

    Article  CAS  Google Scholar 

  6. Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature2006, 441, 489–493.

    Article  CAS  Google Scholar 

  7. Hu, Y. J.; Xiang, J.; Liang, G.; Yan, H.; Lieber, C. M. Sub-100 nanometer channel length Ge/Si nanowire transistors with potential for 2 THz switching speed. Nano Lett.2008, 8, 925–930.

    Article  CAS  Google Scholar 

  8. Hu, Y. J.; Churchill, H. O. H.; Reilly, D. J.; Xiang, J.; Lieber, C. M.; Marcus, C. M. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nat. Nanotechnol.2007, 2, 622–625.

    Article  CAS  Google Scholar 

  9. Yan, H.; Choe, H. S.; Nam, S. W.; Hu, Y. J.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M. Programmable nanowire circuits for nanoprocessors. Nature2011, 470, 240–244.

    Article  CAS  Google Scholar 

  10. Hu, Y. J.; Kuemmeth, F.; Lieber, C. M.; Marcus, C. M. Hole spin relaxation in Ge-Si core-shell nanowire qubits. Nat. Nanotechnol.2012, 7, 47–50.

    Article  CAS  Google Scholar 

  11. Dai, H. J.; Wong, E. W.; Lieber, C. M. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science1996, 272, 523–526.

    Article  CAS  Google Scholar 

  12. Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science1997, 277, 1971–1975.

    Article  CAS  Google Scholar 

  13. Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature1998, 391, 62–64.

    Article  CAS  Google Scholar 

  14. Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res.1999, 32, 435–445.

    Article  CAS  Google Scholar 

  15. Kim, P.; Odom, T. W.; Huang, J. L.; Lieber, C. M. Electronic density of states of atomically resolved single-walled carbon nanotubes: Van hove singularities and end states. Phys. Rev. Lett.1999, 82, 1225–1228.

    Article  CAS  Google Scholar 

  16. Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science2000, 289, 94–97.

    Article  CAS  Google Scholar 

  17. Avouris, P. Molecular electronics with carbon nanotubes. Acc. Chem. Res.2002, 35, 1026–1034.

    Article  CAS  Google Scholar 

  18. McEuen, P. L.; Fuhrer, M. S.; Park, H. Single-walled carbon nanotube electronics. IEEE Trans. Nanotechnol.2002, 1, 78–85.

    Article  Google Scholar 

  19. Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Nanotube molecular wires as chemical sensors. Scienc2000, 287, 622–626.

    Article  CAS  Google Scholar 

  20. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C.; Rao, A. M. Carbon nanotubes. In The Physics of Fullerene-Based and Fullerene-Related Materials. Andreoni, W., Eds.; Springer: Dordrecht, 2000; pp 331–379.

    Chapter  Google Scholar 

  21. Kelty, S. P.; Chen, C. C.; Lieber, C. M. Superconductivity at 30 K in caesium-doped C60. Nature1991, 352, 223–225.

    Article  CAS  Google Scholar 

  22. Chen, C. C.; Lieber, C. M. Isotope effect and superconductivity in metal-doped C60. Science1993, 259, 655–658.

    Article  CAS  Google Scholar 

  23. Zhang, J.; Liu, J.; Huang, J. L.; Kim, P.; Lieber, C. M. Creation of nanocrystals through a solid-solid phase transition induced by an STM tip. Science1996, 274, 757–760.

    Article  CAS  Google Scholar 

  24. Dekker, C.; Tans, S. J.; Geerligs, L. J.; Bezryadin, A.; Wu, J.; Wegner, G.. Towards electrical transport on single molecules. In Atomic and Molecular Wires. Joachim, C.; Roth, S., Ed.; Kluwer Academic Publisher: Boston, 1997.

    Google Scholar 

  25. Liu, J.; Dai, H. J.; Hafner, J. H.; Colbert, D. T.; Smalley, R. E.; Tans, S. J.; Dekker, C. Fullerene “crop circles”. Nature1997, 385, 780–781.

    Article  CAS  Google Scholar 

  26. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B. et al. Fullerene pipes. Science1998, 280, 1253–1256.

    Article  CAS  Google Scholar 

  27. Kelty, S. P.; Lieber, C. M. Scanning tunneling microscopy investigations of the electronic structure of potassium-graphite intercalation compounds. J. Phys. Chem.1989, 93, 5983–5985.

    Article  CAS  Google Scholar 

  28. Kelty, S. P.; Lieber, C. M. Atomic-resolution scanning-tunneling-microscopy investigations of alkali-metal-graphite intercalation compounds. Phys. Rev. B1989, 40, 5856–5859.

    Article  CAS  Google Scholar 

  29. Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature2018, 555, 231–236.

    Article  CAS  Google Scholar 

  30. Lieber, C. Modification and manipulation of layered materials using scanned probe microscopies. In Proceedings of the SPIE 10310, Technology of Proximal Probe Lithography, Bellingham, United States, 1993, pp 103100D.

  31. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum hall effect and berry’s phase in graphene. Nature2005, 438, 201–204.

    Article  CAS  Google Scholar 

  32. Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science2008, 319, 1229–1232.

    Article  CAS  Google Scholar 

  33. Park, J. U.; Nam, S. W.; Lee, M. S.; Lieber, C. M. Synthesis of monolithic graphene-graphite integrated electronics. Nat. Mater.2012, 11, 120–125.

    Article  CAS  Google Scholar 

  34. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano2013, 7, 2898–2926.

    Article  CAS  Google Scholar 

  35. Gao, N.; Gao, T.; Yang, X.; Dai, X. C.; Zhou, W.; Zhang, A. Q.; Lieber, C. M. Specific detection of biomolecules in physiological solutions using graphene transistor biosensors. Proc. Natl. Acad. Sci. USA2016, 113, 14633–14638.

    Article  CAS  Google Scholar 

  36. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  37. Kang, J. S.; Wu, H.; Li, M.; Hu, Y. J. Intrinsic low thermal conductivity and phonon renormalization due to strong anharmonicity of single-crystal tin selenide. Nano Lett.2019, 19, 4941–4948.

    Article  CAS  Google Scholar 

  38. Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der waals heterostructures. Science2016, 353, aac9439.

    Article  CAS  Google Scholar 

  39. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der waals heterostructures and devices. Nat. Rev. Mater.2016, 1, 16042.

    Article  CAS  Google Scholar 

  40. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev.2017, 117, 6225–6331.

    Article  CAS  Google Scholar 

  41. Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science2009, 324, 768–771.

    Article  CAS  Google Scholar 

  42. Lei, S. D.; Wang, X. F.; Li, B.; Kang, J. H.; He, Y. M.; George, A.; Ge, L. H.; Gong, Y. J.; Dong, P.; Jin, Z. H. et al. Surface functionalization of two-dimensional metal chalcogenides by lewis acid-base chemistry. Nat. Nanotechnol.2016, 11, 465–471.

    Article  CAS  Google Scholar 

  43. Liu, H. T.; Liu, Y. Q.; Zhu, D. B. Chemical doping of graphene. J. Mater. Chem.2011, 21, 3335–3345.

    Article  CAS  Google Scholar 

  44. Wang, H. T.; Wang, Q. X.; Cheng, Y. C.; Li, K.; Yao, Y. B.; Zhang, Q.; Dong, C. Z.; Wang, P.; Schwingenschlögl, U.; Yang, W. et al. Doping monolayer graphene with single atom substitutions. Nano Lett.2012, 12, 141–144.

    Article  CAS  Google Scholar 

  45. Li, H. L.; Wu, X. P.; Liu, H. J.; Zheng, B. Y.; Zhang, Q. L.; Zhu, X. L.; Wei, Z.; Zhuang, X. J.; Zhou, H.; Tang, W. X. et al. Composition-modulated two-dimensional semiconductor lateral heterostructures via layer-selected atomic substitution. ACS Nano2017, 11, 961–967.

    Article  CAS  Google Scholar 

  46. Tsetseris, L.; Wang, B.; Pantelides, S. T. Substitutional doping of graphene: The role of carbon divacancies. Phys. Rev. B2014, 89, 035411.

    Article  CAS  Google Scholar 

  47. Xu, X. D.; Gabor, N. M.; Alden, J. S.; van der Zande, A. M.; Mceuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett.2010, 10, 562–566.

    Article  CAS  Google Scholar 

  48. Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol.2014, 9, 257–261.

    Article  CAS  Google Scholar 

  49. Baugher, B. W. H.; Churchill, H. O. H.; Yang, Y. F.; Jarillo-herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol.2014, 9, 262–267.

    Article  CAS  Google Scholar 

  50. Geim, A. K.; Grigorieva, I. V. Van der waals heterostructures. Nature2013, 499, 419–425.

    Article  CAS  Google Scholar 

  51. Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater.2014, 13, 1096–1101.

    Article  CAS  Google Scholar 

  52. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater.2014, 13, 1135–1142.

    Article  CAS  Google Scholar 

  53. Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol.2014, 9, 1024–1030.

    Article  CAS  Google Scholar 

  54. Li, M.; Kang, J. S.; Nguyen, H. D.; Wu, H.; Aoki, T.; Hu, Y. J. Anisotropic thermal boundary resistance across 2D black phosphorus: Experiment and atomistic modeling of interfacial energy transport. Adv. Mater.2019, 31, 1901021.

    Article  CAS  Google Scholar 

  55. Kang, J. S.; Ke, M.; Hu, Y. J. Ionic intercalation in two-dimensional van der waals materials: In situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Lett.2017, 17, 1431–1438.

    Article  CAS  Google Scholar 

  56. Morita, A. Semiconducting black phosphorus. Appl. Phys. A1986, 39, 227–242.

    Article  Google Scholar 

  57. Ling, X.; Wang, H.; Huang, S. X.; Xia, F. N.; Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA2015, 112, 4523–4530.

    Article  CAS  Google Scholar 

  58. Li, M.; Kang, J. S.; Hu, Y. J. Anisotropic thermal conductivity measurement using a new asymmetric- beam time-domain thermoreflectance (AB-TDTR) method. Rev. Sci. Instrum.2018, 89, 084901.

    Article  Google Scholar 

  59. Sugai, S.; Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun.1985, 53, 753–755.

    Article  CAS  Google Scholar 

  60. Wu, J. X.; Mao, N. N.; Xie, L. M.; Xu, H.; Zhang, J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem., Int. Ed.2015, 54, 2366–2369.

    Article  CAS  Google Scholar 

  61. Zhao, S. J.; Kang, W.; Xue, J. M. The potential application of phosphorene as an anode material in Li-ion batteries. J. Mater. Chem. A2014, 2, 19046–19052.

    Article  CAS  Google Scholar 

  62. Li, Q. F.; Duan, C. G.; Wan, X. G.; Kuo, J. L. Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus. J. Phys. Chem. C2015, 119, 8662–8670.

    Article  CAS  Google Scholar 

  63. Jung, S. C.; Han, Y. K. Thermodynamic and kinetic origins of lithiation-induced amorphous-to-crystalline phase transition of phosphorus. J. Phys. Chem. C2015, 119, 12130–12137.

    Article  CAS  Google Scholar 

  64. Shirotani, I. Growth of large single crystals of black phosphorus at high pressures and temperatures, and its electrical properties. Mol. Cryst. Liq. Cryst.1982, 86, 203–211.

    Article  Google Scholar 

  65. Montgomery, H. C. Method for measuring electrical resistivity of anisotropic materials. J. Appl. Phys.1971, 42, 2971–2975.

    Article  CAS  Google Scholar 

  66. Akahama, Y.; Endo, S.; Narita, S. Electrical properties of single-crystal black phosphorus under pressure. Phys. B+C1986, 139–140, 397–400.

    Article  Google Scholar 

  67. Akahama, Y.; Endo, S.; Narita, S. I. Electrical properties of black phosphorus single crystals. J. Phys Soc. Jpn.1983, 52, 2148–2155.

    Article  CAS  Google Scholar 

  68. Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; van de Groep, J.; Brongersma, M. L. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol.2018, 13, 294–299.

    Article  CAS  Google Scholar 

  69. Xiong, F.; Wang, H. T.; Liu, X. G.; Sun, J.; Brongersma, M.; Pop, E.; Cui, Y. Li intercalation in MoS2: In situ observation of its dynamics and tuning optical and electrical properties. Nano Lett.2015, 15, 6777–6784.

    Article  CAS  Google Scholar 

  70. Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Holt, Rinehart & Winston: New York, 1976.

    Google Scholar 

  71. Nguyen, H. D.; Kang, J. S.; Li, M.; Hu, Y. J. High-performance field emission based on nanostructured tin selenide for nanoscale vacuum transistors. Nanoscale2019, 11, 3129–3137.

    Article  CAS  Google Scholar 

  72. Brovman, Y. M.; Small, J. P.; Hu, Y. J.; Fang, Y.; Lieber, C. M.; Kim, P. Electric field effect thermoelectric transport in individual silicon and germanium / silicon nanowires. J. Appl. Phys.2016, 119, 234304.

    Article  CAS  Google Scholar 

  73. Koski, K. J.; Cha, J. J.; Reed, B. W.; Wessells, C. D.; Kong, D. S.; Cui, Y. High-density chemical intercalation of zero-valent copper into Bi2Se3 nanoribbons. J. Am. Chem. Soc.2012, 134, 7584–7587.

    Article  CAS  Google Scholar 

  74. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter2009, 21, 395502.

    Article  Google Scholar 

  75. Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M. et al. Advanced capabilities for materials modelling with quantum ESPRESSO. J. Phys. Condens. Matter2017, 29, 465901.

    Article  CAS  Google Scholar 

  76. Fan, H.; Wu, H.; Lindsay, L.; Hu, Y. J. Ab initio investigation of single-layer high thermal conductivity boron compounds. Phys. Rev. B2019, 100, 085420.

    Article  CAS  Google Scholar 

  77. Kang, J. S.; Li, M.; Wu, H.; Nguyen, H.; Hu, Y. J. Experimental observation of high thermal conductivity in boron arsenide. Science2018, 361, 575–578.

    Article  CAS  Google Scholar 

  78. Kang, J. S.; Wu, H.; Hu, Y. J. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications. Nano Lett.2017, 17, 7507–7514.

    Article  CAS  Google Scholar 

  79. Kang, J. S.; Li, M.; Wu, H.; Nguyen, H.; Hu, Y. J. Basic physical properties of cubic boron arsenide. Appl. Phys. Lett.2019, 115, 122103.

    Article  CAS  Google Scholar 

  80. Faghaninia, A.; Ager III, J. W.; Lo, C. S. Ab initio electronic transport model with explicit solution to the linearized boltzmann transport equation. Phys. Rev. B2015, 91, 235123.

    Article  CAS  Google Scholar 

  81. Faghaninia, A.; Ager III, J. W.; Lo, C. S. Ab Initio Model for Mobility and Seebeck Coefficient Using Boltzmann Transport (AMoBT) Equation [Online]. NanoHUB. https://nanohub.org/resources/amobt (accessed Nov 27, 2019).

  82. Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids; Clarendon Press: Oxford, 1960.

    Google Scholar 

  83. Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A. S.; Su, H. B.; Castro Neto, A. H. Phosphorene□: From theory to applications. Nat. Rev. Mater.2019, 1, 16061.

    Article  CAS  Google Scholar 

  84. Maennig, B.; Pfeiffer, M.; Nollau, A.; Zhou, X.; Leo, K.; Simon, P. Controlled P-type doping of polycrystalline and amorphous organic layers: Self-consistent description of conductivity and field-effect mobility by a microscopic percolation model. Phys. Rev. B2001, 64, 195208.

    Article  CAS  Google Scholar 

  85. Ryu, Y. R.; Lee, T. S.; White, H. W. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Appl. Phys. Lett.2003, 83, 87–89.

    Article  CAS  Google Scholar 

  86. Snaith, H. J.; Grätzel, M. Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye- sensitized solar cells. Appl. Phys. Lett.2006, 89, 262114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y. H. acknowledges support from a CAREER award from the National Science Foundation under grant DMR-1753393, an Alfred P. Sloan Research Fellowship under grant FG-2019-11788, a Young Investigator Award from the US Air Force Office of Scientific Research under grant FA9550-17-1-0149, a Doctoral New Investigator Award from the American Chemical Society Petroleum Research Fund under grant 58206-DNI5, as well as from the UCLA Sustainable LA Grand Challenge and the Anthony and Jeanne Pritzker Family Foundation. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1548562. Specifically, it used the Bridges system, which is supported by NSF award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, M., Nguyen, H.D., Fan, H. et al. Complementary doping of van der Waals materials through controlled intercalation for monolithically integrated electronics. Nano Res. 13, 1369–1375 (2020). https://doi.org/10.1007/s12274-020-2634-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2634-y

Keywords

Navigation