Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Application of miRNAs in the diagnosis and monitoring of testicular germ cell tumours

Abstract

Testicular germ cell tumours (TGCTs) are the most frequent cancer type in young men and originate from the common precursor germ cell neoplasia in situ (GCNIS). For decades, clinical management of patients with TGCT has relied on classic serum tumour markers: α-fetoprotein, human chorionic gonadotropin subunit-β and lactate dehydrogenase. In the past 10 years, microRNAs have been shown to outperform classic serum tumour markers in the diagnosis of primary tumours and in follow-up monitoring and prediction of relapse. miR-371a-3p is the most consistent marker and exhibits >90% diagnostic sensitivity and specificity in TGCT. However, miR-371a-3p cannot be used to diagnose GCNIS or mature teratoma. Future efforts must technically standardize the microRNA-based methods internationally and introduce miR-371a-3p as a molecular liquid biopsy-based marker for TGCTs in the clinic.

Key points

  • The currently available protein-based serum markers of testicular germ cell tumours (TGCTs), α-fetoprotein (AFP), human chorionic gonadotropin subunit-β (β-HCG) and lactate dehydrogenase (LDH), show poor diagnostic performance, especially for seminomas.

  • New microRNA-based biomarkers, particularly miR-371a-3p, outperform the existing protein-based serum markers in diagnostic performance and enable detection of seminomas.

  • Validated miRNA-based tests can change clinical decision-making in the primary diagnosis and follow-up monitoring of patients with TGCT.

  • Introducing miRNA-based biomarker testing reduces the costs of patient monitoring by reducing the number of imaging scans needed in patients with negative results.

  • Novel biomarkers are needed to overcome the limitations of miR-371a-3p, such as in the diagnosis of mature teratoma and of the precursor lesion, germ cell neoplasia in situ.

  • Universal standardization of protocols is needed for detecting, quantifying and reporting miRNA-based biomarkers in patients with TGCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Developmental biology as a driver for uncovering testicular germ cell tumour biomarkers.
Fig. 2: Sensitivity of the classic serum tumour markers AFP, β-HCG and LDH in detecting TGCT compared with miRNA-based markers (all miRNA tests considered).

Similar content being viewed by others

References

  1. Ulbright, T. M. et al. Germ cell tumours. in WHO Classification of Tumours of the Urinary System and Male Genital Organs (eds Moch, H., Humphrey, P. A., Ulbright, T. M., Reuter, V. E.) 189–226 (IARC Press, 2016).

  2. Skakkebaek, N. E. et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol. Rev. 96, 55–97 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Rajpert-De Meyts, E., McGlynn, K. A., Okamoto, K., Jewett, M. A. S. & Bokemeyer, C. Testicular germ cell tumours. Lancet 387, 1762–1774 (2016).

    Article  PubMed  Google Scholar 

  4. Walsh, T. J., Croughan, M. S., Schembri, M., Chan, J. M. & Turek, P. J. Increased risk of testicular germ cell cancer among infertile men. Arch. Intern. Med. 169, 351–356 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wood, H. M. & Elder, J. S. Cryptorchidism and testicular cancer: separating fact from fiction. J. Urol. 181, 452–461 (2009).

    Article  PubMed  Google Scholar 

  6. Litchfield, K. et al. Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nat. Genet. 49, 1133–1140 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, Z. et al. Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nat. Genet. 49, 1141–1147 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Litchfield, K. et al. Large-scale sequencing of testicular germ cell tumour (TGCT) cases excludes major TGCT predisposition gene. Eur. Urol. 73, 828–831 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Sonne, S. B. et al. Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte. Cancer Res. 69, 5241–5250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lobo, J. et al. Testicular germ cell tumors: revisiting a series in light of the new WHO classification and AJCC staging systems, focusing on challenges for pathologists. Hum. Pathol. 82, 113–124 (2018).

    Article  PubMed  Google Scholar 

  11. Dieckmann, K.-P. et al. Testicular germ-cell tumours: a descriptive analysis of clinical characteristics at first presentation. Urol. Int. 100, 409–419 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Escudero-Ávila, R. et al. Active surveillance as a successful management strategy for patients with clinical stage I germ cell testicular cancer. Clin. Transl Oncol. 21, 796–804 (2019).

    Article  PubMed  Google Scholar 

  13. Honecker, F. et al. ESMO Consensus Conference on testicular germ cell cancer: diagnosis, treatment and follow-up. Ann. Oncol. 29, 1658–1686 (2018). This article presents the consensus European guidelines on the clinical management of patients with testicular germ cell tumour, relevant for understanding the impact of miRNAs in the clinic.

    Article  CAS  PubMed  Google Scholar 

  14. Palumbo, C. et al. Contemporary incidence and mortality rates in patients with testicular germ cell tumors. Clin. Genitourin. Cancer 17, e1026–e1035 (2019).

    Article  PubMed  Google Scholar 

  15. Albers, P. et al. Guidelines on testicular cancer: 2015 update. Eur. Urol. 68, 1054–1068 (2015).

    Article  PubMed  Google Scholar 

  16. Stephenson, A. et al. Diagnosis and treatment of early stage testicular cancer: AUA guideline. J. Urol. 202, 272–281 (2019).

    Article  PubMed  Google Scholar 

  17. Aparicio, J. et al. SEOM clinical guidelines for the management of germ cell testicular cancer (2016). Clin. Transl Oncol. 18, 1187–1196 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oosterhuis, J. W. & Looijenga, L. H. J. Human germ cell tumours from a developmental perspective. Nat. Rev. Cancer 19, 522–537 (2019). This article presents a broad perspective on the biology and classification of germ cell tumours, including from a developmental point of view, necessary to understand the relevance of the specific miRNAs discussed.

    Article  CAS  PubMed  Google Scholar 

  19. Lobo, J., Gillis, A. J. M., Jerónimo, C., Henrique, R. & Looijenga, L. H. J. Human germ cell tumors are developmental cancers: impact of epigenetics on pathobiology and clinic. Int. J. Mol. Sci. 20, 258 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  20. Oosterhuis, J. W. & Looijenga, L. H. J. Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer 5, 210–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Gillis, A. J. M. et al. Expression and interdependencies of pluripotency factors LIN28, OCT3/4, NANOG and SOX2 in human testicular germ cells and tumours of the testis. Int. J. Androl. 34, e160–e174 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Nettersheim, D. et al. The cancer/testis-antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas. Br. J. Cancer 115, 454–464 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ehrlich, Y., Beck, S. D. W., Foster, R. S., Bihrle, R. & Einhorn, L. H. Serum tumor markers in testicular cancer. Urol. Oncol. 31, 17–23 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Gilligan, T. D. et al. American Society of Clinical Oncology clinical practice guideline on uses of serum tumor markers in adult males with germ cell tumors. J. Clin. Oncol. 28, 3388–3404 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Milose, J. C., Filson, C. P., Weizer, A. Z., Hafez, K. S. & Montgomery, J. S. Role of biochemical markers in testicular cancer: diagnosis, staging, and surveillance. Open. Access. J. Urol. 4, 1–8 (2011).

    PubMed  PubMed Central  Google Scholar 

  26. Lobo, J. et al. XIST-promoter demethylation as tissue biomarker for testicular germ cell tumors and spermatogenesis quality. Cancers 11, 1385 (2019).

    Article  PubMed Central  Google Scholar 

  27. Kawakami, T., Okamoto, K., Ogawa, O. & Okada, Y. XIST unmethylated DNA fragments in male-derived plasma as a tumour marker for testicular cancer. Lancet 363, 40–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Gross, N., Kropp, J. & Khatib, H. MicroRNA signaling in embryo development. Biology 6, 34 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  29. Nappi, L. & Nichols, C. MicroRNAs as biomarkers for germ cell tumors. Urol. Clin. North. Am. 46, 449–457 (2019).

    Article  PubMed  Google Scholar 

  30. Singla, N., Lafin, J. T. & Bagrodia, A. MicroRNAs: turning the tide in testicular cancer. Eur. Urol. 76, 541–542 (2019). This article gives a brief summary of most compelling evidence supporting the clinical utility of miRNAs in patients with testicular germ cell tumour and indicates the remaining challenges.

    Article  PubMed  Google Scholar 

  31. Murray, M. J. & Coleman, N. Can circulating microRNAs solve clinical dilemmas in testicular germ cell malignancy? Nat. Rev. Urol. 16, 505–506 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Murray, M. J. & Coleman, N. MicroRNA dysregulation in malignant germ cell tumors: more than a biomarker? J. Clin. Oncol. 37, 1432–1435 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Liu, L. et al. MicroRNA-302a sensitizes testicular embryonal carcinoma cells to cisplatin-induced cell death. J. Cell. Physiol. 228, 2294–2304 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Dieckmann, K.-P., Frey, U. & Lock, G. Contemporary diagnostic work-up of testicular germ cell tumours. Nat. Rev. Urol. 10, 703–712 (2013).

    Article  PubMed  Google Scholar 

  35. Barrisford, G. W. et al. Role of imaging in testicular cancer: current and future practice. Future Oncol. 11, 2575–2586 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Dieckmann, K.-P., Kulejewski, M., Pichlmeier, U. & Loy, V. Diagnosis of contralateral testicular intraepithelial neoplasia (TIN) in patients with testicular germ cell cancer: systematic two-site biopsies are more sensitive than a single random biopsy. Eur. Urol. 51, 175–183 (2007).

    Article  PubMed  Google Scholar 

  37. Rajpert-De Meyts, E., Nielsen, J. E., Skakkebaek, N. E. & Almstrup, K. Diagnostic markers for germ cell neoplasms: from placental-like alkaline phosphatase to micro-RNAs. Folia Histochem. Cytobiol. 53, 177–188 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Kier, M. G. G. et al. Screening for carcinoma in situ in the contralateral testicle in patients with testicular cancer: a population-based study. Ann. Oncol. 26, 737–742 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Holzbeierlein, J. M., Sogani, P. C. & Sheinfeld, J. Histology and clinical outcomes in patients with bilateral testicular germ cell tumors: the Memorial Sloan Kettering Cancer Center experience 1950 to 2001. J. Urol. 169, 2122–2125 (2003).

    Article  PubMed  Google Scholar 

  40. Dieckmann, K.-P. et al. Serum levels of microRNA-371a-3p (M371 test) as a new biomarker of testicular germ cell tumors: results of a prospective multicentric study. J. Clin. Oncol. 37, 1412–1423 (2019). This article presents data of a large prospective multicentre study of the clinical utility of miR-371a-3p in the diagnosis and follow-up monitoring of patients with testicular germ cell tumour, compared with classic serum tumour markers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dieckmann, K.-P., Anheuser, P., Simonsen, H. & Höflmayer, D. Pure testicular seminoma with non-pathologic elevation of alpha fetoprotein: a case series. Urol. Int. 99, 353–357 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Murray, M. J., Huddart, R. A. & Coleman, N. The present and future of serum diagnostic tests for testicular germ cell tumours. Nat. Rev. Urol. 13, 715–725 (2016). This article discusses the several limitations of classic serum tumour markers in the management of patients with testicular germ cell tumour compared with miRNAs.

    Article  CAS  PubMed  Google Scholar 

  43. Ahmad, A. Non-coding RNAs: a tale of junk turning into treasure. Noncoding RNA Res. 1, 1–2 (2016).

    Article  PubMed  Google Scholar 

  44. Richard Boland, C. Non-coding RNA: it’s not junk. Dig. Dis. Sci. 62, 1107–1109 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Xi, X. et al. RNA biomarkers: frontier of precision medicine for cancer. Noncoding RNA 3, E9 (2017).

    PubMed  Google Scholar 

  46. Bing, Z. et al. MicroRNA expression profiles of seminoma from paraffin-embedded formalin-fixed tissue. Virchows Arch. 461, 663–668 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Gillis, A. J. M. et al. High-throughput microRNAome analysis in human germ cell tumours. J. Pathol. 213, 319–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Novotny, G. W. et al. MicroRNA expression profiling of carcinoma in situ cells of the testis. Endocr. Relat. Cancer 19, 365–379 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Vilela-Salgueiro, B. et al. Germ cell tumour subtypes display differential expression of microRNA371a-3p. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373, 20170338 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Voorhoeve, P. M. et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124, 1169–1181 (2006). The first work identifying miRNAs of the miR-371-373 cluster as informative in testicular germ cell tumours.

    Article  CAS  PubMed  Google Scholar 

  51. Dieckmann, K.-P. et al. MicroRNAs miR-371-3 in serum as diagnostic tools in the management of testicular germ cell tumours. Br. J. Cancer 107, 1754–1760 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gillis, A. J. M. et al. Targeted serum miRNA (TSmiR) test for diagnosis and follow-up of (testicular) germ cell cancer patients: a proof of principle. Mol. Oncol. 7, 1083–1092 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rijlaarsdam, M. A. et al. Identification of known and novel germ cell cancer-specific (embryonic) miRs in serum by high-throughput profiling. Andrology 3, 85–91 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Murray, M. J. et al. A pipeline to quantify serum and cerebrospinal fluid microRNAs for diagnosis and detection of relapse in paediatric malignant germ-cell tumours. Br. J. Cancer 114, 151–162 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Belge, G., Dieckmann, K.-P., Spiekermann, M., Balks, T. & Bullerdiek, J. Serum levels of microRNAs miR-371-3: a novel class of serum biomarkers for testicular germ cell tumors? Eur. Urol. 61, 1068–1069 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Murray, M. J. et al. Identification of microRNAs from the miR-371 373 and miR-302 clusters as potential serum biomarkers of malignant germ cell tumors. Am. J. Clin. Pathol. 135, 119–125 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Syring, I. et al. Circulating serum miRNA (miR-367-3p, miR-371a-3p, miR-372-3p and miR-373-3p) as biomarkers in patients with testicular germ cell cancer. J. Urol. 193, 331–337 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Spiekermann, M. et al. MicroRNA miR-371a-3p in serum of patients with germ cell tumours: evaluations for establishing a serum biomarker. Andrology 3, 78–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Dieckmann, K.-P. et al. MicroRNA miR-371a-3p – a novel serum biomarker of testicular germ cell tumors: evidence for specificity from measurements in testicular vein blood and in neoplastic hydrocele fluid. Urol. Int. 97, 76–83 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Salvatori, D. C. F. et al. The microRNA-371 family as plasma biomarkers for monitoring undifferentiated and potentially malignant human pluripotent stem cells in teratoma assays. Stem Cell Rep. 11, 1493–1505 (2018).

    Article  CAS  Google Scholar 

  61. Almstrup, K. et al. Screening of subfertile men for testicular carcinoma in situ by an automated image analysis-based cytological test of the ejaculate. Int. J. Androl. 34, e21–e30 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. van Casteren, N. J. et al. Noninvasive detection of testicular carcinoma in situ in semen using OCT3/4. Eur. Urol. 54, 153–158 (2008).

    Article  PubMed  Google Scholar 

  63. van Agthoven, T. & Looijenga, L. H. J. Accurate primary germ cell cancer diagnosis using serum based microRNA detection (ampTSmiR test). Oncotarget 8, 58037–58049 (2017).

    PubMed  Google Scholar 

  64. Radtke, A. et al. Can germ cell neoplasia in situ be diagnosed by measuring serum levels of microRNA371a-3p? J. Cancer Res. Clin. Oncol. 143, 2383–2392 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pelloni, M. et al. Differential expression of miRNAs in the seminal plasma and serum of testicular cancer patients. Endocrine 57, 518–527 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Boellaard, W. P. A. et al. Cellular origin of microRNA-371a-3p in healthy males based on systematic urogenital tract tissue evaluation. Andrology 7, 463–468 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Radtke, A. et al. Expression of miRNA-371a-3p in seminal plasma and ejaculate is associated with sperm concentration. Andrology 7, 469–474 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Kollmannsberger, C. et al. Patterns of relapse in patients with clinical stage I testicular cancer managed with active surveillance. J. Clin. Oncol. 33, 51–57 (2015).

    Article  PubMed  Google Scholar 

  69. Beard, C. J. et al. Follow-up management of patients with testicular cancer: a multidisciplinary consensus-based approach. J. Natl Compr. Canc. Netw. 13, 811–822 (2015).

    Article  PubMed  Google Scholar 

  70. Beyer, J. et al. Maintaining success, reducing treatment burden, focusing on survivorship: highlights from the third European consensus conference on diagnosis and treatment of germ-cell cancer. Ann. Oncol. 24, 878–888 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Schaapveld, M. et al. Risk and prognostic significance of metachronous contralateral testicular germ cell tumours. Br. J. Cancer 107, 1637–1643 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hamilton, R. J. et al. Treatment of relapse of clinical stage I nonseminomatous germ cell tumors on surveillance. J. Clin. Oncol. 37, 1919–1926 (2019).

    Article  PubMed  Google Scholar 

  73. Trigo, J. M. et al. Tumor markers at the time of recurrence in patients with germ cell tumors. Cancer 88, 162–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Nicholson, B. D. et al. The diagnostic performance of current tumour markers in surveillance for recurrent testicular cancer: a diagnostic test accuracy systematic review. Cancer Epidemiol. 59, 15–21 (2019).

    Article  PubMed  Google Scholar 

  75. Anheuser, P. et al. Serum levels of microRNA371a-3p: a highly sensitive tool for diagnosing and staging testicular germ cell tumours: a clinical case series. Urol. Int. 99, 98–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. van Agthoven, T., Eijkenboom, W. M. H. & Looijenga, L. H. J. microRNA-371a-3p as informative biomarker for the follow-up of testicular germ cell cancer patients. Cell. Oncol. 40, 379–388 (2017).

    Article  CAS  Google Scholar 

  77. Dieckmann, K.-P. et al. Serum levels of microRNA miR-371a-3p: a sensitive and specific new biomarker for germ cell tumours. Eur. Urol. 71, 213–220 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Terbuch, A. et al. MiR-371a-3p serum levels are increased in recurrence of testicular germ cell tumor patients. Int. J. Mol. Sci. 19, E3130 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Rosas Plaza, X. et al. miR-371a-3p, miR-373-3p and miR-367-3p as serum biomarkers in metastatic testicular germ cell cancers before, during and after chemotherapy. Cells 8, E1221 (2019).

    Article  PubMed  Google Scholar 

  80. Nappi, L. et al. Developing a highly specific biomarker for germ cell malignancies: plasma miR371 expression across the germ cell malignancy spectrum. J. Clin. Oncol. 37, 3090–3098 (2019). This is a large study demonstrating 100% specificity in diagnosing active germ cell malignancy using miR-371a-3p.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Leão, R. et al. Serum miRNA predicts viable disease after chemotherapy in patients with testicular nonseminoma germ cell tumor. J. Urol. 200, 126–135 (2018). This article describes evidence on the utility of miRNAs in detecting viable germ cell malignancy after chemotherapy.

    Article  CAS  PubMed  Google Scholar 

  82. Logothetis, C. J., Samuels, M. L., Trindade, A. & Johnson, D. E. The growing teratoma syndrome. Cancer 50, 1629–1635 (1982).

    Article  CAS  PubMed  Google Scholar 

  83. Hiester, A., Nettersheim, D., Nini, A., Lusch, A. & Albers, P. Management, treatment, and molecular background of the growing teratoma syndrome. Urol. Clin. North. Am. 46, 419–427 (2019).

    Article  PubMed  Google Scholar 

  84. Paffenholz, P., Pfister, D., Matveev, V. & Heidenreich, A. Diagnosis and management of the growing teratoma syndrome: a single-center experience and review of the literature. Urol. Oncol. 36, 529.e23–529.e30 (2018).

    Article  Google Scholar 

  85. Shen, H. et al. Integrated molecular characterization of testicular germ cell tumors. Cell Rep. 23, 3392–3406 (2018). This article describes an integrated broad molecular analysis of testicular germ cell tumours, including miRNAs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lobo, J. et al. Identification and validation model for informative liquid biopsy-based microRNA biomarkers: insights from germ cell tumor in vitro, in vivo and patient-derived data. Cells 8, 1637 (2019).

    Article  PubMed Central  Google Scholar 

  87. Belge, G., Grobelny, F., Matthies, C., Radtke, A. & Dieckmann, K.-P. Serum level of microRNA-375-3p is not a reliable biomarker of teratoma. In Vivo 34, 163–168 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lafin, J. T. et al. Serum microRNA-371a-3p levels predict viable germ cell tumor in chemotherapy-naïve patients undergoing retroperitoneal lymph node dissection. Eur. Urol. 77, 290–292 (2020).

    Article  CAS  PubMed  Google Scholar 

  89. Charytonowicz, D. et al. Cost analysis of noninvasive blood-based microRNA testing versus CT scans for follow-up in patients with testicular germ-cell tumors. Clin. Genitourin. Cancer 17, e733–e744 (2019).

    Article  PubMed  Google Scholar 

  90. Chovanec, M., Kalavska, K., Mego, M. & Cheng, L. Liquid biopsy in germ cell tumors: biology and clinical management. Expert Rev. Mol. Diagn. 20, 187–194 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Laprovitera, N., Grzes, M., Porcellini, E. & Ferracin, M. Cancer site-specific multiple microRNA quantification by droplet digital PCR. Front. Oncol. 8, 447 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Palmer, R. D. et al. Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res. 70, 2911–2923 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Murray, M. J. & Coleman, N. Testicular cancer: a new generation of biomarkers for malignant germ cell tumours. Nat. Rev. Urol. 9, 298–300 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Mego, M. et al. Clinical utility of plasma miR-371a-3p in germ cell tumors. J. Cell. Mol. Med. 23, 1128–1136 (2019).

    CAS  PubMed  Google Scholar 

  95. Radtke, A. et al. The novel biomarker of germ cell tumours, micro-RNA-371a-3p, has a very rapid decay in patients with clinical stage 1. Urol. Int. 100, 470–475 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Bossuyt, P. M. et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ 351, h5527 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nørgaard-Pedersen, B. et al. Tumour markers in testicular germ cell tumours five-year experience from the DATECA study 1976–1980. Acta Radiol. Oncol. 23, 287–294 (1984).

    Article  PubMed  Google Scholar 

  98. Kausitz, J., Ondrus, D., Belan, V. & Matoska, J. Monitoring of patients with non-seminomatous germ cell tumors of the testis by determination of alpha-fetoprotein and beta-human chorionic gonadotropin levels and by computed tomography. Neoplasma 39, 357–361 (1992).

    CAS  PubMed  Google Scholar 

  99. Javadpour, N. Limitation of AFP and HCG in testicular cancer. Urology 17, 218 (1981).

    Article  Google Scholar 

  100. Venkitaraman, R. et al. The utility of lactate dehydrogenase in the follow-up of testicular germ cell tumours. BJU Int. 100, 30–32 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Gels, M. E. et al. Importance of a new tumor marker TRA-1-60 in the follow-up of patients with clinical stage I nonseminomatous testicular germ cell tumors. Ann. Surg. Oncol. 4, 321–327 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors receive funding from Innovation Fund Denmark and the Børnecancerfonden (grant numbers 14-2013-4 and 2016-0304 to K.A., N.M. and E.R.-De M.); ReproUnion and the Svend Andersen Foundation (no grant numbers, to K.A. and N.M.); FCT (Fundação para a Ciência e Tecnologia; grant numbers POCI-01-0145-FEDER-29043 and SFRH/BD/132751/2017 to J.L.); and Deutsche Krebshilfe (grant number 70113186 to G.B. and K.-P.D.).

Review criteria

We performed a review of PubMed (2019), using the search terms of “germ cell cancer” or “germ cell tumour”, “miRNA” and “plasma” and focused on papers relating to diagnostics (Table 1). Studies were reviewed according to the Standards for Reporting Diagnostic Accuracy Studies (STARD) guidelines: https://www.equator-network.org/reporting-guidelines/stard/.

Author information

Authors and Affiliations

Authors

Contributions

K.A., J.L., N.M., E.R.-De M., L.H.J.L. and K.-P.D. researched data for and wrote the manuscript. All authors made substantial contributions to discussion of the content and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Kristian Almstrup, Leendert H. J. Looijenga or Klaus-Peter Dieckmann.

Ethics declarations

Competing interests

K.-P.D. and G.B. each possess 9.7% ownership shares in miRdetect GmbH, Bremen. All remaining authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Urology thanks D. Nettersheim, R. Huddart and P. Giannatempo for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Germ cell neoplasia in situ

(GCNIS). The pre-invasive lesion from which type II testicular germ cell tumours (seminomas and non-seminomas) derive.

Cryptorchidism

A condition in which the testes have not descended into the scrotum.

Disorders of sex development

Conditions in which the gonads and genitalia have not developed as expected, sometimes resulting in gender ambiguity or even a gender opposite to that determined by genetics.

Testicular dysgenesis syndrome

A syndrome that is caused by poor gonadal development in fetal life and later manifests as either poor semen quality, cryptorchidism, some forms of hypospadias or testicular germ cell cancer.

Sex-determination

The process of gonadal development into either testes or ovaries.

Seminomas

Morphologically homogeneous subtype of testicular germ cell tumours derived from germ cell neoplasia in situ.

Non-seminomas

Heterogeneous subtype of testicular germ cell tumours that can be composed of embryonal carcinoma, teratoma, yolk sac tumour and choriocarcinoma.

Orchiectomy

Surgical removal of a testis.

Liquid biopsies

Analyses of body fluids, most commonly a blood sample, for biomarkers that can diagnose a disease or condition.

miRNAs

Small molecules of RNA that are 21–24 bases long.

Classic serum tumour markers

Protein-based biomarkers in serum commonly used for managing patients with testicular germ cell tumours. They include α-fetoprotein (AFP), human chorionic gonadotropin subunit-β (β-HCG), and lactate dehydrogenase (LDH).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almstrup, K., Lobo, J., Mørup, N. et al. Application of miRNAs in the diagnosis and monitoring of testicular germ cell tumours. Nat Rev Urol 17, 201–213 (2020). https://doi.org/10.1038/s41585-020-0296-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41585-020-0296-x

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer