Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Paradoxical mitotic exit induced by a small molecule inhibitor of APC/CCdc20

Abstract

The anaphase-promoting complex/cyclosome (APC/C) is a ubiquitin ligase that initiates anaphase and mitotic exit. APC/C is activated by Cdc20 and inhibited by the mitotic checkpoint complex (MCC), which delays mitotic exit when the spindle assembly checkpoint (SAC) is activated. We previously identified apcin as a small molecule ligand of Cdc20 that inhibits APC/CCdc20 and prolongs mitosis. Here we find that apcin paradoxically shortens mitosis when SAC activity is high. These opposing effects of apcin arise from targeting of a common binding site in Cdc20 required for both substrate ubiquitination and MCC-dependent APC/C inhibition. Furthermore, we found that apcin cooperates with p31comet to relieve MCC-dependent inhibition of APC/C. Apcin therefore causes either net APC/C inhibition, prolonging mitosis when SAC activity is low, or net APC/C activation, shortening mitosis when SAC activity is high, demonstrating that a small molecule can produce opposing biological effects depending on regulatory context.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Apcin promotes slippage from SAC-induced mitotic arrest.
Fig. 2: Apcin hastens cyclin B1 degradation before slippage.
Fig. 3: Apcin-induced mitotic slippage depends on APC/CCdc20.
Fig. 4: Apcin treatment does not affect MCC generation.
Fig. 5: p31comet and apcin cooperate to reactivate APC/C.
Fig. 6: Apcin-induced slippage requires a functional Cdc20 DBR.

Similar content being viewed by others

Data availability

Raw data associated with Figs. 1a–e, 2b,c, 3a,b, 4b, 5a,d,f and 6b–e are available from the corresponding author upon reasonable request. All MS data generated during this study have been deposited to the ProteomeXchange Consortium via the PRIDE56 partner repository with dataset identifier PXD013786.

Code availability

MATLAB code used to calculate mitotic fraction is available upon request from the corresponding author.

References

  1. Peters, J. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7, 644–656 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Alfieri, C., Zhang, S. & Barford, D. Visualizing the complex functions and mechanisms of the anaphase promoting complex/cyclosome (APC/C). Open Biol. 7, 170204 (2017).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Watson, E. R., Brown, N. G., Peters, J. M., Stark, H. & Schulman, B. A. Posing the APC/C E3 ubiquitin ligase to orchestrate cell division. Trends Cell Biol. 29, 117–134 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nat. Rev. Mol. Cell Biol. 8, 379–393 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, S.-T. & Zhang, H. The mitotic checkpoint complex (MCC): looking back and forth after 15 years. AIMS Mol. Sci. 3, 597–634 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Izawa, D. & Pines, J. The mitotic checkpoint complex binds a second CDC20 to inhibit active APC/C. Nature 517, 631–634 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Alfieri, C. et al. Molecular basis of APC/C regulation by the spindle assembly checkpoint. Nature 536, 431–436 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Yamaguchi, M. et al. Cryo-EM of mitotic checkpoint complex-bound APC/C reveals reciprocal and conformational regulation of ubiquitin ligation. Mol. Cell 63, 593–607 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Di Fiore, B., Wurzenberger, C., Davey, N. E. & Pines, J. The mitotic checkpoint complex requires an evolutionary conserved cassette to bind and inhibit active APC/C. Mol. Cell 64, 1144–1153 (2016).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Burton, J. L. & Solomon, M. J. Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev. 21, 655–667 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Sewart, K. & Hauf, S. Different functionality of Cdc20 binding sites within the mitotic checkpoint complex. Curr. Biol. 27, 1213–1220 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Verma, R. Ubistatins inhibit proteasome-dependent degradation by binding the ubiquitin chain. Science 306, 117–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Zeng, X. et al. Pharmacologic inhibition of the anaphase-promoting complex induces a spindle checkpoint-dependent mitotic arrest in the absence of spindle damage. Cancer Cell 18, 382–395 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Zeng, X. & King, R. W. An APC/C inhibitor stabilizes cyclin B1 by prematurely terminating ubiquitination. Nat. Chem. Biol. 8, 383–392 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Sackton, K. L. et al. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. Nature 514, 646–649 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhang, S. et al. Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature 533, 260–264 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kung, A. L., Sherwood, S. W. & Schimke, R. T. Cell line-specific differences in the control of cell cycle progression in the absence of mitosis. Proc. Natl Acad. Sci. USA 87, 9553–9557 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Andreassen, P. R. & Margolis, R. L. Microtubule dependency of p34cdc2 inactivation and mitotic exit in mammalian cells. J. Cell Biol. 127, 789–802 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Brito, D. A. & Rieder, C. L. Mitotic checkpoint slippage in humans occurs via cyclin B destruction in the presence of an active checkpoint. Curr. Biol. 16, 1194–1200 (2006).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Gascoigne, K. E. & Taylor, S. S. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 14, 111–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Huang, H., Shi, J., Orth, J. D. & Mitchison, T. J. Evidence that mitotic exit is a better cancer therapeutic target than spindle assembly. Cancer Cell 16, 347–358 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Manchado, E. et al. Targeting mitotic exit leads to tumor regression in vivo: modulation by Cdk1, Mastl, and the PP2A/B55α,δ phosphatase. Cancer Cell 18, 641–654 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Giovinazzi, S., Bellapu, D., Morozov, V. M. & Ishov, A. M. Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy. Cell Cycle 12, 2598–2607 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Crawford, L. J., Anderson, G., Johnston, C. K. & Irvine, A. E. Identification of the APC/C co-factor FZR1 as a novel therapeutic target for multiple myeloma. Oncotarget 7, 70481–70485 (2016).

    Article  PubMed Central  PubMed  Google Scholar 

  25. Hewitt, L. et al. Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1–C-Mad2 core complex. J. Cell Biol. 190, 25–34 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. den Elzen, N. & Pines, J. Cyclin A Is destroyed in prometaphase and can delay chromosome alignment and anaphase. J. Cell Biol. 153, 121–136 (2001).

    Article  Google Scholar 

  27. Geley, S. et al. Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. J. Cell Biol. 153, 137–147 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Clute, P. & Pines, J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat. Cell Biol. 1, 82–87 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Van Zon, W. et al. The APC/C recruits cyclin B1–Cdk1–Cks in prometaphase before D box recognition to control mitotic exit. J. Cell Biol. 190, 587–602 (2010).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Balachandran, R. S. et al. The ubiquitin ligase CRL2ZYG11 targets cyclin B1 for degradation in a conserved pathway that facilitates mitotic slippage. J. Cell Biol. 215, 151–166 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Wolthuis, R. et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol. Cell 30, 290–302 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Baumgarten, A. J., Felthaus, J. & Wäsch, R. Strong inducible knockdown of APC/CCdc20 does not cause mitotic arrest in human somatic cells. Cell Cycle 8, 643–646 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Ma, H. T., Chan, Y. Y., Chen, X., On, K. F. & Poon, R. Y. C. Depletion of p31comet protein promotes sensitivity to antimitotic drugs. J. Biol. Chem. 287, 21561–21569 (2012).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Díaz‐Martínez, L. A. et al. Genome‐wide siRNA screen reveals coupling between mitotic apoptosis and adaptation. EMBO J. 33, 1960–1976 (2014).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Westhorpe, F. G., Tighe, A., Lara-Gonzalez, P. & Taylor, S. S. p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J. Cell Sci. 124, 3905–3916 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mansfeld, J., Collin, P., Collins, M. O., Choudhary, J. S. & Pines, J. APC15 drives the turnover of MCC–CDC20 to make the spindle assembly checkpoint responsive to kinetochore attachment. Nat. Cell Biol. 13, 1234–1243 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Varetti, G., Guida, C., Santaguida, S., Chiroli, E. & Musacchio, A. Homeostatic control of mitotic arrest. Mol. Cell 44, 710–720 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Qiao, R. et al. Mechanism of APC/CCDC20 activation by mitotic phosphorylation. Proc. Natl Acad. Sci. USA 113, E2570–E2578 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhu, B. T. The competitive and noncompetitive antagonism of receptor-mediated drug actions in the presence of spare receptors. J. Pharmacol. Toxicol. Methods 29, 85–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Chi, J. et al. A novel strategy to block mitotic progression for targeted therapy. EBioMedicine 49, 40–54 (2019).

    Article  PubMed  Google Scholar 

  41. Yang, M. et al. p31comet blocks Mad2 activation through structural mimicry. Cell 131, 744–755 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Hoskin, P. J. & Hanks, G. W. Opioid agonist–antagonist drugs in acute and chronic pain states. Drugs 41, 326–344 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. McDonnell, D. P. & Wardell, S. E. The molecular mechanisms underlying the pharmacological actions of ER modulators: implications for new drug discovery in breast cancer. Curr. Opin. Pharmacol. 10, 620–628 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Karoulia, Z., Gavathiotis, E. & Poulikakos, P. I. New perspectives for targeting RAF kinase in human cancer. Nat. Rev. Cancer 17, 676–691 (2017).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Sigoillot, F. D. et al. A time-series method for automated measurement of changes in mitotic and interphase duration from time-lapse movies. PLoS One 6, e25511 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Taylor, S. S. & McKeon, F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell 89, 727–735 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Bentley, A. M., Normand, G., Hoyt, J. & King, R. W. Distinct sequence elements of cyclin B1 promote localization to chromatin, centrosomes, and kinetochores during mitosis. Mol. Biol. Cell 18, 4847–4858 (2007).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Navarrete-Perea, J., Yu, Q., Gygi, S. P. & Paulo, J. A. Streamlined tandem mass tag (SL-TMT) protocol: an efficient strategy for quantitative (phospho)proteome profiling using tandem mass tag–synchronous precursor selection–MS3. J. Proteome Res. 17, 2226–2236 (2018).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Ting, L., Rad, R., Gygi, S. P. & Haas, W. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat. Methods 8, 937–940 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Paulo, J. A., O’Connell, J. D. & Gygi, S. P. A triple knockout (TKO) proteomics standard for diagnosing ion interference in isobaric labeling experiments. J. Am. Soc. Mass Spectrom. 27, 1620–1625 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Paulo, J. A. Sample preparation for proteomic analysis using a GeLC–MS/MS strategy. J. Biol. Methods 3, 45 (2016).

    Article  Google Scholar 

  53. Jafari, R. et al. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat. Protoc. 9, 2100–2122 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Weissmann, F. et al. biGBac enables rapid gene assembly for the expression of large multisubunit protein complexes. Proc. Natl Acad. Sci. USA 113, E2564–E2569 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Brown, N. G. et al. Dual RING E3 architectures regulate multiubiquitination and ubiquitin chain elongation by APC/C. Cell 165, 1440–1453 (2016).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We extend our gratitude in memoriam to J. Hoyt, who first observed the phenotype of apcin-induced premature mitotic exit in the presence of nocodazole. We thank X. Zeng for contributing to early investigations on the mechanism of apcin-induced mitotic slippage and for comments on the manuscript. We thank T. Mitchison and D. Finley for helpful discussions. We thank the Nikon Imaging Facility at Harvard Medical School for assistance with time-lapse microscopy, the Image and Data Analysis Core at Harvard Medical School for assistance with immunofluorescence and time-lapse microscopy analysis, the ICCB-Screening Facility at Harvard Medical School for assistance with high-throughput imaging in fixed cell experiments and the Harvard Medical School Cell Biology Initiative for Molecular Trafficking and Neurodegeneration for help with MiSeq CRISPR knock-in cell line verification. This work was supported by NIH grant R35GM127032 to R.W.K. T.B. was supported by NSF grant DGE-1650116 and NIH grant T32GM00857. N.G.B. was supported by NIH grant R35GM128855 and UCRF. B.A.S., N.G.B. and M.Y. were supported by ALSAC/St. Jude and NIH grant 5P30CA021765 (St. Jude Cancer Center).

Author information

Authors and Affiliations

Authors

Contributions

K.V.R. designed and performed experiments to characterize mitotic slippage induced by apcin in mammalian cells. K.V.R. characterized the effect of apcin in high-throughput fixed cell assays, performed immunoprecipitation for immunoblot and MS analysis as well as immunofluorescence and investigated cyclin B1–GFP levels through fluorescence time-lapse microscopy. K.V.R. generated the Cdc20D177A CRISPR knock-in cell line and investigated the effect of apcin in the mutant background. T.B. and M.Y. performed in vitro ubiquitination assays with recombinant proteins in the presence of MCC, apcin, p31comet and/or Cdc20D177A with advice from B.A.S. and N.G.B. T.B. additionally investigated APC/C and MCC binding in vitro in response to MCC, apcin and p31comet with advice from N.G.B. K.L.S. performed initial experiments characterizing apcin-induced mitotic slippage via time-lapse microscopy and identified conditions for immunoprecipitation from cellular extracts. J.A.P. and S.P.G. performed MS analysis for the Cdc20 and Cdc27 immunoprecipitation samples. R.W.K. conceived the project and assisted with experimental design and data analysis. R.W.K. and K.V.R. wrote the manuscript, with assistance from all authors.

Corresponding author

Correspondence to Randall W. King.

Ethics declarations

Competing interests

There is a patent on this work, filed by Harvard University on behalf of K.L.S. and R.W.K.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, and Supplementary Figs. 1–8

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richeson, K.V., Bodrug, T., Sackton, K.L. et al. Paradoxical mitotic exit induced by a small molecule inhibitor of APC/CCdc20. Nat Chem Biol 16, 546–555 (2020). https://doi.org/10.1038/s41589-020-0495-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-020-0495-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing