Skip to main content
Log in

Characterization of Pingliang xiaoheidou (ZDD 11047), a soybean variety with resistance to soybean cyst nematode Heterodera glycines

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Key message

A novel QTL (qSCN-PL10) for SCN resistance and related candidate genes were identified in the soybean variety Pingliang xiaoheidou, and plant basal immunity seems to contribute to the SCN resistance.

Abstract

Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most devastating soybean pests worldwide. The development of host plant resistance represents an effective strategy to control SCN. However, owing to the lack of diversity of resistance genes in soybean varieties, further investigation is necessary to identify new SCN resistance genes. By analyzing the resistance phenotypes of soybean variety Pingliang xiaoheidou (Pingliang, ZDD 11047), we found that it exhibited the different resistance phenotypes from PI 88788 and Peking varieties. Because Pingliang variety contains the Rhg1-a (low copy) haplotype and lacks the resistant Rhg4 haplotype, novel quantitative trait locus might account for their SCN resistance. After sequencing parental lines (Magellan and Pingliang) and 200 F2:3 progenies, a high-density genetic map was constructed using the specific length amplified fragment sequencing method and qSCN-PL10 was identified as a novel locus for SCN resistance. Candidate genes were predicted by RNA sequencing (RNA-seq) in the qSCN-PL10 locus region. The RNA-seq analysis performed also indicated that plant basal immunity plays an important role in the resistance of Pingliang to SCN. These results lay a foundation for the use of marker-assisted breeding to enhance the resistance to SCN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

RNA-Seq‘s raw data has been published at WEBLINK https://www.ncbi.nlm.nih.gov/bioproject/579241 with BioProject ID PRJNA579241.

References

  • Afzal AJ, Srour A, Saini N, Hemmati N, El Shemy HA, Lightfoot DA (2012) Recombination suppression at the dominant Rhg1/Rfs2 locus underlying soybean resistance to the cyst nematode. Theor Appl Genet 124:1027–1039

    CAS  PubMed  Google Scholar 

  • Arelli AP, Wilcox JA, Myers O Jr, Gibson PT (1997) Soybean germplasm resistant to races 1 and 2 of Heterodera glycines. Crop Sci 37:1367–1369

    Google Scholar 

  • Arelli PR, Sleper DA, Pin Y, Wilcox JA (2000) Soybean reaction to Races 1 and 2 of Heterodera glycines. Crop Sci 40:824–826

    Google Scholar 

  • Brown S, Yeckel G, Heinz R, Clark K, Sleper D, Mitchum MG (2010) A high-throughput automated technique for counting females of Heterodera glycines using a fluorescence-based imaging system. J Nematol 42:201

    PubMed  PubMed Central  Google Scholar 

  • Brucker E, Carlson S, Wright E, Niblack T, Diers B (2005) Rhg1 alleles from soybean PI 437654 and PI 88788 respond differentially to isolates of Heterodera glycines in the greenhouse. Theor Appl Genet 111:44–49

    CAS  PubMed  Google Scholar 

  • Chen JC, Lu HC, Chen CE, Hsu HF, Chen HH, Yeh HH (2013) The NPR1 ortholog PhaNPR1 is required for the induction of PhaPR1 in Phalaenopsis aphrodite. Bot Stud 54:1–11

    CAS  Google Scholar 

  • Chen JS, Li XB, Li ZY, Zhou CJ, Luo X, Wang D, Duan YX, Chen Lj (2015) Identification of the virulence type of soybean cyst nematode under continuous cropping in Daqing and Anda. Soybean Sci 34:676–678

    Google Scholar 

  • Concibido VC, Diers BW, Arelli PR (2004) A decade of QTL mapping for cyst nematode resistance in soybean. Crop Sci 44:1121–1131

    CAS  Google Scholar 

  • Cook DE, Bayless AM, Wang K, Guo X, Song Q, Jiang J, Bent AF (2014) Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg1-mediated soybean resistance to soybean cyst nematode. Plant Physiol 165:630–647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook DE, Lee TG, Guo X, Melito S, Wang K, Bayless AM, Wang J, Hughes TJ, Willis DK, Clemente TE et al (2012) Copy number variation of multiple genes at Rhg1 mediates nematode resistance in soybean. Science 338:1206–1209

    CAS  PubMed  Google Scholar 

  • Fricke W (2001) Xylem: differentiation, water transport and ecology. eLS 1–7

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–1186

    CAS  PubMed  Google Scholar 

  • Guo B, Sleper DA, Arelli PR, Shannon JG, Nguyen HT (2005) Identification of QTLs associated with resistance to soybean cyst nematode races 2, 3 and 5 in soybean PI 90763. Theor Appl Genet 111:965–971

    CAS  PubMed  Google Scholar 

  • Guo W, Zhang F, Bao A, You Q, Li Z, Chen J, Cheng Y, Zhao W, Shen X, Zhou X et al (2019) The soybean Rhg1 amino acid transporter gene alters glutamate homeostasis and jasmonic acid-induced resistance to soybean cyst nematode. Mol Plant Pathol 20:270–286

    CAS  PubMed  Google Scholar 

  • He Y, Xu J, Wang X, He X, Wang Y, Zhou J, Zhang S, Meng X (2019) The Arabidopsis pleiotropic drug resistance transporters PEN3 and PDR12 mediate camalexin secretion for resistance to Botrytis cinerea. Plant Cell 31:2206–2222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Healey A, Furtado A, Cooper T, Henry RJ (2014) Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10:21

    PubMed  PubMed Central  Google Scholar 

  • Hernandez-Sanchez IE, Maruri-Lopez I, Graether SP, Jimenez-Bremont JF (2017) In vivo evidence for homo- and heterodimeric interactions of Arabidopsis thaliana dehydrins AtCOR47, AtERD10, and AtRAB18. Sci Rep 7:17036

    PubMed  PubMed Central  Google Scholar 

  • Holbein J, Grundler FM, Siddique S (2016) Plant basal resistance to nematodes: an update. J Exp Bot 67:2049–2061

    CAS  PubMed  Google Scholar 

  • Irieda H, Inoue Y, Mori M, Yamada K, Oshikawa Y, Saitoh H, Uemura A, Terauchi R, Kitakura S, Kosaka A et al (2019) Conserved fungal effector suppresses PAMP-triggered immunity by targeting plant immune kinases. Proc Natl Acad Sci USA 116:496–505

    CAS  PubMed  Google Scholar 

  • Jiao Y, Vuong TD, Liu Y, Meinhardt C, Liu Y, Joshi T, Cregan PB, Xu D, Shannon JG, Nguyen HT (2015) Identification and evaluation of quantitative trait loci underlying resistance to multiple HG types of soybean cyst nematode in soybean PI 437655. Theor Appl Genet 128:15–23

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T et al (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–484

    CAS  PubMed  Google Scholar 

  • Kim M, Hyten DL, Niblack TL, Diers BW (2011) Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci 51:934–943

    Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kud J, WangW GR, Fan Y, Huang L, Yuan Y, Gray A, Duarte A, Kuhl JC, Caplan A et al (2019) The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling. PLoS Pathog 15:e1007720

    PubMed  PubMed Central  Google Scholar 

  • Lee MW, Huffaker A, Crippen D, Robbins RT, Goggin FL (2018) Plant elicitor peptides promote plant defences against nematodes in soybean. Mol Plant Pathol 19:858–869

    CAS  PubMed  Google Scholar 

  • Lee TG, Kumar I, Diers BW, Hudson ME (2015) Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus. Mol Ecol 24:1774–1791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    CAS  PubMed  Google Scholar 

  • Li Y, Cui H, Cui X, Wang A (2016) The altered photosynthetic machinery during compatible virus infection. Curr Opin Virol 17:19–24

    CAS  PubMed  Google Scholar 

  • Lin B, Zhuo K, Chen S, Hu L, Sun L, Wang X, Zhang LH, Liao J (2015) A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system. New Phytol 209:1159–1173

    PubMed  PubMed Central  Google Scholar 

  • Liu D, Ma C, Hong W, Huang L, Liu M, Liu H, Zeng H, Deng D, Xin H, Song J et al (2014) Construction and analysis of high-density linkage map using high-throughput sequencing data. PLoS ONE 9:e98855

    PubMed  PubMed Central  Google Scholar 

  • Liu S, Kandoth PK, Warren SD, Yeckel G, Heinz R, Alden J, Yang C, Jamai A, El-Mellouki T, Juvale PS et al (2012) A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature 492:256–260

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lu Y, Yao J (2018) Chloroplasts at the crossroad of photosynthesis, pathogen infection and plant defense. Int J Mol Sci. https://doi.org/10.3390/ijms19123900

    Article  PubMed  PubMed Central  Google Scholar 

  • Manohar M, Tenjo-Castano F, Chen S, Zhang YK, Kumari A, Williamson VM, Wang X, Klessig DF, Schroeder FC (2020) Plant metabolism of nematode pheromones mediates plant-nematode interactions. Nat Commun 11:208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manosalva P, Manohar M, von Reuss SH, Chen S, Koch A, Kaplan F, Choe A, Micikas RJ, Wang X, Kogel KH et al (2015) Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat Commun 6:7795

    CAS  PubMed  Google Scholar 

  • Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21:3787–3793

    CAS  PubMed  Google Scholar 

  • Mendy B, Wang'ombe MW, Radakovic ZS, Holbein J, Ilyas M, Chopra D, Holton N, Zipfel C, Grundler FM, Siddique S (2017) Arabidopsis leucine-rich repeat receptor-like kinase NILR1 is required for induction of innate immunity to parasitic nematodes. PLoS Pathog 13:e1006284

    PubMed  PubMed Central  Google Scholar 

  • Mitchum MG (2016) Soybean resistance to the soybean cyst nematode Heterodera glycines: an update. Phytopathology 106:1444–1450

    CAS  PubMed  Google Scholar 

  • Mitchum MG, Wrather JA, Heinz RD, Shannon JG, Danekas G (2007) Variability in distribution and virulence phenotypes of Heterodera glycines in missouri during 2005. Plant Dis 91:1473–1476

    PubMed  Google Scholar 

  • Monecke T, Buschmann J, Neumann P, Wahle E, Ficner R (2014) Crystal structures of the novel cytosolic 5'-nucleotidase IIIB explain its preference for m7GMP. PLoS ONE 9:e90915

    PubMed  PubMed Central  Google Scholar 

  • Moran-Diez E, Rubio B, Dominguez S, Hermosa R, Monte E, Nicolas C (2012) Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169:614–620

    CAS  PubMed  Google Scholar 

  • Mulo P (2011) Chloroplast-targeted ferredoxin-NADP(+) oxidoreductase (FNR): structure, function and location. Biochim Biophys Acta 1807:927–934

    CAS  PubMed  Google Scholar 

  • Niblack TL, Lambert KN, Tylka GL (2006) A model plant pathogen from the kingdom Animalia: Heterodera glycines, the soybean cyst nematode. Annu Rev Phytopathol 44:283–303

    CAS  PubMed  Google Scholar 

  • Niblack TL, Tylka GL, Arelli P, Bond J, Diers B, Donald P, Faghihi J, Gallo K, Heinz RD, Lopez-Nicora H et al (2009) A standard greenhouse method for assessing soybean cyst nematode resistance in soybean: SCE08 (standardized cyst evaluation 2008). Plant Health Prog 10(1):33

    Google Scholar 

  • Nivedita Verma PK, Upadhyaya KC (2017) Lectin protein kinase is induced in plant roots in response to the endophytic fungus, Piriformospora indica. Plant Mol Biol Reporter 35:323–332

    Google Scholar 

  • Noctor G, Mhamdi A (2017) Climate change, CO2, and defense: the metabolic, redox, and signaling perspectives. Trends Plant Sci 22:857–870

    CAS  PubMed  Google Scholar 

  • Noman A, Aqeel M, Lou Y (2019) PRRs and NB-LRRs: from signal perception to activation of plant innate immunity. Int J Mol Sci. https://doi.org/10.3390/ijms20081882

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil GB, Lakhssassi N, Wan J, Song L, Zhou Z, Klepadlo M, Vuong TD, Stec AO, Kahil SS, Colantonio V, Valliyodan B, Rice JH, Piya S, Hewezi T, Stupar RM, Meksem K, Nguyen HT (2019) Whole-genome re-sequencing reveals the impact of the interaction of copy number variants of the rhg1 and Rhg4 genes on broad-based resistance to soybean cyst nematode. Plant Biotechnol J 17(8):1595–1611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Plett JM, Tisserant E, Brun A, Morin E, Grigoriev IV, Kuo A, Martin F, Kohler A (2015) The mutualist laccaria bicolor expresses a core gene regulon during the colonization of diverse host plants and a variable regulon to counteract host-specific defenses. Mol Plant Microb Interact 28:261–273

    CAS  Google Scholar 

  • Sato K, Kadota Y, Shirasu K (2019) Plant immune responses to parasitic nematodes. Front Plant Sci 10:1165

    PubMed  PubMed Central  Google Scholar 

  • Schaff JE, Nielsen DM, Smith CP, Scholl EH, Bird DM (2007) Comprehensive transcriptome profiling in tomato reveals a role for glycosyltransferase in Mi-mediated nematode resistance. Plant Physiol 144:1079–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano I, Audran C, Rivas S (2016) Chloroplasts at work during plant innate immunity. J Exp Bot 67:3845–3854

    CAS  PubMed  Google Scholar 

  • Shah SJ, Anjam MS, Mendy B, Anwer MA, Habash SS, Lozano-Torres JL, Grundler FMW, Siddique S (2017) Damage-associated responses of the host contribute to defence against cyst nematodes but not root-knot nematodes. J Exp Bot 68:5949–5960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Liu D, Zhang X, Li W, Liu H, Hong W, Jiang C, Guan N, Ma C, Zeng H et al (2013) SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE 8:e58700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira MA, Wei L, Kaloshian I (2016) Root-knot nematodes induce pattern-triggered immunity in Arabidopsis thaliana roots. New Phytol 211:276–287

    CAS  PubMed  Google Scholar 

  • Tiwari M, Sharma D, Singh M, Tripathi RD, Trivedi PK (2014) Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. Sci Rep 4:3964

    PubMed  PubMed Central  Google Scholar 

  • Upadhyay N, Kar D, Deepak Mahajan B, Nanda S, Rahiman R, Panchakshari N, Bhagavatula L, Datta S (2019) The multitasking abilities of MATE transporters in plants. J Exp Bot 70:4643–4656

    PubMed  Google Scholar 

  • van Ooijen JW (2011) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res (Camb) 93:343–349

    Google Scholar 

  • van Os H, Stam P, Visser RG, van Eck HJ (2005) SMOOTH: a statistical method for successful removal of genotyping errors from high-density genetic linkage data. Theor Appl Genet 112:187–194

    CAS  PubMed  Google Scholar 

  • Vuong TD, Sleper DA, Shannon JG, Nguyen HT (2010) Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C. Theor Appl Genet 121:1253–1266

    CAS  PubMed  Google Scholar 

  • Wang Y, Bouwmeester K (2017) L-type lectin receptor kinases: new forces in plant immunity. PLoS Pathog 13:e1006433

    PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wanke D, Kolukisaoglu HU (2010) An update on the ABCC transporter family in plants: many genes, many proteins, but how many functions? Plant Biol (Stuttg) 12(Suppl 1):15–25

    CAS  Google Scholar 

  • Wen Z, Tan R, Zhang S, Collins PJ, Yuan J, Du W, Gu C, Ou S, Song Q, An YC et al (2018) Integrating GWAS and gene expression data for functional characterization of resistance to white mould in soya bean. Plant Biotechnol J 16:1825–1835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winter SM, Shelp BJ, Anderson TR, Welacky TW, Rajcan I (2007) QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI464925B. Theor Appl Genet 114:461–472

    PubMed  Google Scholar 

  • Wu CH, Abd-El-Haliem A, Bozkurt TO, Belhaj K, Terauchi R, Vossen JH, Kamoun S (2017) NLR network mediates immunity to diverse plant pathogens. Proc Natl Acad Sci USA 114:8113–8118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Liu S, Zhao Y, Wang W, Kong Z, Tang D (2015) ENHANCED DISEASE RESISTANCE4 associates with CLATHRIN HEAVY CHAIN2 and modulates plant immunity by regulating relocation of EDR1 in Arabidopsis. Plant Cell 27:857–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Blake S, Sleper DA, Shannon JG, Cregan P, Nguyen HT (2009) QTL, additive and epistatic effects for SCN resistance in PI 437654. Theor Appl Genet 118:1093–1105

    CAS  PubMed  Google Scholar 

  • Yang Y, Zhou Y, Chi Y, Fan B, Chen Z (2017) characterization of soybean WRKY gene family and identification of soybean WRKY genes that promote resistance to soybean cyst nematode. Sci Rep 7:17804

    PubMed  PubMed Central  Google Scholar 

  • Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010) Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 11(2):R14

    PubMed  PubMed Central  Google Scholar 

  • Zhang H, Kjemtrup-Lovelace S, Li C, Luo Y, Chen LP, Song BH (2017) Comparative rna-seq analysis uncovers a complex regulatory network for soybean cyst nematode resistance in wild soybean (Glycine soja). Sci Rep 7:9699

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFD0100603), the Major project of Research and Development of Applied Technology in Heilongjiang Province (GA18B101), the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences, the National Natural Science Foundation of China (31501334 and 31522042).

Author information

Authors and Affiliations

Authors

Contributions

WG, XJS, JSC, and YQJ designed the study; WG, JSC, FZ, CJZ, and HFC performed the QTL and genomic qPCR analyses; LMC, SLY, RL, ZYL, WJD, and JSC performed the nematode assays; SLC, ZHS, ZLY, XJZ, DZQ, QBY, and XJS performed the qRT-PCR analysis; DC, QNH, WG, and JSC analyzed the data; WG, XJS, XAZ, and JSC wrote the paper; WG, XJS, and YQJ coordinated the study. All authors have read and approved the manuscript for submission.

Corresponding authors

Correspondence to Wei Guo, Xin J. Shen or Yong Q. Jiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Chen, J.S., Zhang, F. et al. Characterization of Pingliang xiaoheidou (ZDD 11047), a soybean variety with resistance to soybean cyst nematode Heterodera glycines. Plant Mol Biol 103, 253–267 (2020). https://doi.org/10.1007/s11103-020-00990-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-00990-4

Keywords

Navigation