Skip to main content
Log in

Hydrogel-based microbeads for Raman-encoded suspension array using the reversed-phase suspension polymerization method and ultraviolet light curing

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A one-step synthesis using the reversed-phase suspension polymerization method and ultraviolet light curing is proposed for preparing the Raman-encoded suspension array (SA). The encoded microcarriers are prepared by doping the Raman reporter molecules into an aqueous phase, and then dispersing the aqueous phase in an oil phase and curing by ultraviolet light irradiation. The multiplexed biomolecule detection and various concentration experiments confirm the qualitative and quantitative analysis capabilities of the Raman-encoded SA with a limit of detection of 52.68 pM. The narrow bandwidth of the Raman spectrum can achieve a large number of codes in the available spectral range and the independence between the encoding channel and the fluorescent label channel provides the encoding method with high accuracy. This preparation method is simple and easy to operate, low in cost, and high in efficiency. A large number of hydrogel-based encoding microbeads could be quickly obtained with good biocompatibility. Most importantly, concentrating plenty of Raman reporter molecules inside the microbeads increases the signal intensity and means the molecular assembly is not limited by the functional groups; thus, the types of materials available for Raman encoding method are expanded. Furthermore, the signal intensity–related encoding method is verified by doping different proportions of Raman reporter molecules with our proposed synthesis method, which further increases the detection throughput of Raman-encoded SA.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Robert W, Cossins AR, Spiller DG. Encoded microcarriers for high-throughput multiplexed detection. Angew Chem Int Ed. 2007;45(37):6104–17.

    Google Scholar 

  2. Lutz BR, Dentinger CE, Nguyen LN, Lei S, Jingwu Z, Allen AN, et al. Spectral analysis of multiplex Raman probe signatures. ACS Nano. 2008;2(11):2306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zou F, Zhou H, Kim J, Koh K, Lee J. Dual-mode SERS-fluorescence immunoassay using graphene quantum dot labeling on one-dimensional aligned magnetoplasmonic nanoparticles. ACS Appl Mater Interfaces. 2015;7(22):12168–75.

    Article  PubMed  CAS  Google Scholar 

  4. Wang F, Deng R, Wang J, Wang Q, Han Y, Zhu H, et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nat Mater. 2011;10:968. https://www.nature.com/articles/nmat3149#supplementary-information. https://doi.org/10.1038/nmat3149.

    Article  PubMed  CAS  Google Scholar 

  5. Gang W, Yuankui L, Hongjing D, Lu W, Wanwan L, Xiebing W, et al. Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection. ACS Nano. 2013;7(1):471.

    Article  Google Scholar 

  6. Lee H, Lee D, Park JH, Song SH, Jeong IG, Kim CS, et al. High throughput differential identification of TMPRSS2-ERG fusion genes in prostate cancer patient urine. Biomaterials. 2017;135:23–9.

    Article  PubMed  CAS  Google Scholar 

  7. Yi Y, Wei L, Peng S, Rui L, Li Y, Xu J, et al. Aptamer fluorescence signal recovery screening for multiplex mycotoxins in cereal samples based on photonic crystal microsphere suspension array. Sensors Actuators B Chem. 2017;248:351–8.

    Article  Google Scholar 

  8. Lu B, He Q, He Y, Chen X, Feng G, Liu S, et al. Dual-channel-coded microbeads for multiplexed detection of biomolecules using assembling of quantum dots and element coding nanoparticles. Anal Chim Acta. 2018;1024:153–60. https://doi.org/10.1016/j.aca.2018.03.025.

  9. Cao D, Li CY, Qi CB, Chen HL, Pang DW, Tang HW. Multiple optical trapping assisted bead-array based fluorescence assay of free and total prostate-specific antigen in serum. Sensors Actuators B Chem. 2018;269:143–50.

    Article  CAS  Google Scholar 

  10. Lim CT, Zhang Y. Bead-based microfluidic immunoassays: the next generation. Biosens Bioelectron. 2007;22(7):1197–204.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao Y, Zhao X, Pei X, Hu J, Zhao W, Chen B, et al. Multiplex detection of tumor markers with photonic suspension array. Anal Chim Acta. 2009;633(1):103–8.

    Article  PubMed  CAS  Google Scholar 

  12. Vaidya SV, M Lane G, Charles M, Alexander C. Spectral bar coding of polystyrene microbeads using multicolored quantum dots. Anal Chem. 2007;79(22):8520–30.

  13. Supratim G, Sykes EA, Jennings TL, Chan WCW. Rapid screening of genetic biomarkers of infectious agents using quantum dot barcodes. ACS Nano. 2011;5(3):1580–7.

    Article  Google Scholar 

  14. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005;307(5709):538–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol. 2001;19(7):631–5.

    Article  PubMed  CAS  Google Scholar 

  16. Feng G, He Q, Xie W, He Y, Chen X, Wang B, et al. Dual-spectra encoded suspension array using reversed-phase microemulsion UV curing and electrostatic self-assembling. RSC Adv. 2018;8(38):21272–9. https://doi.org/10.1039/C8RA02410C.

    Article  CAS  Google Scholar 

  17. Mercato LL, Del, Abbasi AZ, Markus O, Parak WJ. Multiplexed sensing of ions with barcoded polyelectrolyte capsules. ACS Nano. 2011;5(12):9668–74.

    Article  PubMed  Google Scholar 

  18. Shen Z, He Y, Zhang G, He Q, Li D, Ji Y. Dual-wavelength digital holographic phase and fluorescence microscopy for an optical thickness encoded suspension array. Opt Lett. 2018;43(4):739–42. https://doi.org/10.1364/OL.43.000739.

    Article  PubMed  CAS  Google Scholar 

  19. Yunwei Charles C, Rongchao J, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science. 2002;297(5586):1536–40.

    Article  Google Scholar 

  20. Keisham B, Cole A, Nguyen P, Mehta A, Berry V. Cancer cell hyperactivity and membrane dipolarity monitoring via Raman mapping of interfaced graphene: toward non-invasive cancer diagnostics. ACS Appl Mater Interfaces. 2016;8(48):32717–22. https://doi.org/10.1021/acsami.6b12307.

    Article  PubMed  CAS  Google Scholar 

  21. Li JM, Wei C, Ma WF, An Q, Guo J, Hu J, et al. Multiplexed SERS detection of DNA targets in a sandwich-hybridization assay using SERS-encoded core–shell nanospheres. J Mater Chem. 2012;22(24):12100–6.

    Article  CAS  Google Scholar 

  22. Zong S, Wang Z, Zhang R, Wang C, Xu S, Cui Y. A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads. Biosens Bioelectron. 2013;41(1):745–51.

    Article  PubMed  CAS  Google Scholar 

  23. Kim J, Maa M, Zagorovsky K, Chan W. State of diagnosing infectious pathogens using colloidal nanomaterials. Biomaterials. 2017;146:97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Li R, Zhang Y, Tan J, Wan J, Guo J, Wang C. Dual-mode encoded magnetic composite microsphere based on fluorescence reporters and Raman probes as covert tag for anticounterfeiting applications. ACS Appl Mater Interfaces. 2016;8(14):9384–94.

    Article  PubMed  CAS  Google Scholar 

  25. Zhuyuan W, Shenfei Z, Wang L, Chunlei W, Shuhong X, Hui C, et al. SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice. J Am Chem Soc. 2012;134(6):2993–3000.

    Article  Google Scholar 

  26. Hongmei L, Xinping Z, Tianrui Z. Plasmonic nano-ring arrays through patterning gold nanoparticles into interferograms. Opt Express. 2013;21(13):15314–22.

    Article  Google Scholar 

  27. Jun BH, Kim JH, Park H, Kim JS, Yu KN, Lee SM, et al. Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay. J Comb Chem. 2007;9(2):237.

    Article  PubMed  CAS  Google Scholar 

  28. Nidhi N, Ashutosh C. A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem. 2002;74(3):504–9.

    Article  Google Scholar 

  29. Freeman RG, Grabar KC, Allison KJ, Bright RM, Davis JA, Guthrie AP, et al. Self-assembled metal colloid monolayers: an approach to SERS substrates. Science. 1995;267(5204):1629–32.

    Article  PubMed  CAS  Google Scholar 

  30. Michael H, Johan R, Dieter S, Templin MF, Joos TO. Protein microarrays for diagnostic assays. Anal Bioanal Chem. 2009;393(5):1407–16.

    Article  Google Scholar 

  31. Wang B, Guan T, Jiang J, He Q, Chen X, Feng G, et al. Gold-nanorod-enhanced Raman spectroscopy encoded micro-quartz pieces for the multiplex detection of biomolecules. Anal Bioanal Chem. 2019;411(21):5509–18. https://doi.org/10.1007/s00216-019-01929-5.

    Article  PubMed  CAS  Google Scholar 

  32. Lai Y, Sun S, He T, Schlücker S, Wang Y. Raman-encoded microbeads for spectral multiplexing with SERS detection. RSC Adv. 2015;5(18):13762–7.

    Article  CAS  Google Scholar 

  33. You L, Li R, Dong X, Wang F, Guo J, Wang C. Micron-sized surface enhanced Raman scattering reporter/fluorescence probe encoded colloidal microspheres for sensitive DNA detection. J Colloid Interface Sci. 2017;488:109–17.

    Article  PubMed  CAS  Google Scholar 

  34. Wang X, Jiang Y, Wang YW, Huang MT, Ho CT, Huang Q. Enhancing anti-inflammation activity of curcumin through O/W nanoemulsions. Food Chem. 2008;108(2):419–24.

    Article  PubMed  CAS  Google Scholar 

  35. Feng G, Guan T, He Q, Lu B, Chen X, Wang B, et al. Ion-chelation based digital barcodes for multiplexing of a suspension array. Analyst. 2019;144(13):4093–9.

    Article  PubMed  CAS  Google Scholar 

  36. Durst CA, Cuchiara MP, Mansfield EG, West JL, Grande-Allen KJ. Flexural characterization of cell encapsulated PEGDA hydrogels with applications for tissue engineered heart valves. Acta Biomater. 2011;7(6):2467–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Stephanie N, Hayenga HN, West JL. PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol Bioeng. 2010;105(4):636–44.

    Google Scholar 

  38. Shohatee D, Keifer J, Schimmel N, Mohanty S, Ghosh G. Hydrogel-based suspension array for biomarker detection using horseradish peroxidase-mediated silver precipitation. Anal Chim Acta. 2018;999(25):132–8. https://doi.org/10.1016/j.aca.2017.10.033.

  39. Haeshin L, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318(5849):426–30.

    Article  Google Scholar 

  40. Liu Y, Liu L, He Y, He Q, Ma H. Quantum-dots-encoded-microbeads based molecularly imprinted polymer. Biosens Bioelectron. 2016;77:886–93.

    Article  PubMed  CAS  Google Scholar 

  41. He Q, Chen X, He Y, Guan T, Feng G, Lu B, et al. Spectral-optical-tweezer-assisted fluorescence multiplexing system for QDs-encoded bead-array bioassay. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2019.01.004.

Download references

Funding

This research was made possible with the financial support from the National Science Foundation of China (NSFC) (61875102, 81871395, 61675113), the Science and Technology Research Program of Shenzhen City (JCYJ20170816161836562, JCYJ20170817111912585, JCYJ20160427183803458, JCYJ20170412171856582, JCY20180508152528735), the Oversea Cooperation Foundation, and the Graduate School at Shenzhen, Tsinghua University (HW2018007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghong He or Tian Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 230 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhou, X., He, Q. et al. Hydrogel-based microbeads for Raman-encoded suspension array using the reversed-phase suspension polymerization method and ultraviolet light curing. Anal Bioanal Chem 412, 2731–2741 (2020). https://doi.org/10.1007/s00216-020-02528-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-020-02528-5

Keywords

Navigation