Skip to main content
Log in

Impact of Low-Energy Cosmic Rays on Star Formation

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In recent years, exciting developments have taken place in the identification of the role of cosmic rays in star-forming environments. Observations from radio to infrared wavelengths and theoretical modelling have shown that low-energy cosmic rays (\(< 1\text{ TeV}\)) play a fundamental role in shaping the chemical richness of the interstellar medium, determining the dynamical evolution of molecular clouds. In this review we summarise in a coherent picture the main results obtained by observations and by theoretical models of propagation and generation of cosmic rays, from the smallest scales of protostars and circumstellar discs, to young stellar clusters, up to Galactic and extragalactic scales. We also discuss the new fields that will be explored in the near future thanks to new generation instruments, such as: CTA, for the \(\gamma \)-ray emission from high-mass protostars; SKA and precursors, for the synchrotron emission at different scales; and ELT/HIRES, JWST, and ARIEL, for the impact of cosmic rays on exoplanetary atmospheres and habitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Low-energy CRs are defined as charged particles outside of the thermal distribution. The energy peak of the Maxwellian distribution is at about 1 meV, 5 meV, and 1 eV for typical temperatures of dense cores (\(T=10~\text{K}\)), diffuse clouds (\(T=50~\text{K}\)), and protostellar jets (\(T=10^{4}~\text{K}\)), respectively.

  2. By setting the lower integration limit to zero and the upper one to \(E\) in Eq. (5), we obtain the stopping range \(R(E)\) for particles with zero pitch angles (\(\mu =1\)), plotted for different CR species in Fig. 3 (Sect. 3.2).

  3. In Padovani et al. (2018b), the total column density of all gaseous species was used (assuming all the hydrogen to be in molecular form), whereas \(N\) in Eq. (1) is the total column density of hydrogen atoms. Therefore, \(N\) in Silsbee and Ivlev (2019) is a factor of 1.67 higher than that in Padovani et al. (2018b), which is taken into account in the value of \(L_{0}\).

  4. For convenience, the value of \(\tilde{\nu }\) used here is twice the value of \(\nu \) in Ivlev et al. (2018) and Dogiel et al. (2018).

  5. Neufeld and Wolfire (2017) plot \(\zeta_{\mathrm{prim}}\), the primary ionisation rate per hydrogen, which they assume to be 1/2.3 times the total ionisation rate \(\zeta _{\mathrm{H}_{2}}\) (including secondary ionisations) per H2. Taking the fraction of secondary ionisation equal to 0.7 (Glassgold et al. 2012), we shift the points from Neufeld and Wolfire (2017) upwards by a factor of 1.4.

  6. A parallel and perpendicular shock is when the shock normal is parallel and perpendicular, respectively, to the ambient magnetic field.

  7. The relation between up- and downstream temperatures is given by the classic Rankine-Hugoniot condition.

  8. The factor of 4 in the denominator accounts for the fact that the downstream diffusion in the transverse direction is in two dimensions.

References

  • R. Abuter, A. Amorim, M. Bauböck et al. (Gravity Collaboration), A geometric distance measurement to the Galactic center black hole with 0.3% uncertainty. Astron. Astrophys. 625, L10 (2019)

    ADS  Google Scholar 

  • F. Acero, M. Ackermann, M. Ajello et al., The first Fermi LAT supernova remnant catalog. Astrophys. J. Suppl. Ser. 224(1), 8 (2016)

    ADS  Google Scholar 

  • M. Ackermann, M. Ajello, W.B. Atwood et al., Fermi-LAT observations of the diffuse \(\gamma \)-ray emission: implications for cosmic rays and the interstellar medium. Astrophys. J. 750(1), 3 (2012)

    ADS  Google Scholar 

  • M. Ackermann, M. Ajello, A. Allafort et al., Detection of the characteristic pion-decay signature in supernova remnants. Science 339, 807–811 (2013)

    ADS  Google Scholar 

  • M. Ackermann, M. Ajello, A. Albert et al., High-energy gamma-ray emission from solar flares: summary of Fermi Large Area Telescope detections and analysis of two M-class flares. Astrophys. J. 787, 15 (2014)

    ADS  Google Scholar 

  • V. Agra-Amboage, C. Dougados, S. Cabrit, J. Reunanen, Sub-arcsecond [Fe ii] spectro-imaging of the DG Tauri jet. Periodic bubbles and a dusty disk wind? Astron. Astrophys.532, A59 (2011)

    ADS  Google Scholar 

  • M. Aguilar, D. Aisa, A. Alvino, G. Ambrosi et al., Electron and positron fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 113(12), 121102 (2014)

    ADS  Google Scholar 

  • M. Aguilar, D. Aisa, B. Alpat et al., Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett.114(17), 171103 (2015a)

    ADS  Google Scholar 

  • M. Aguilar, D. Aisa, A. Bea, Precision measurement of the helium flux in primary cosmic rays of rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 115(21), 211101 (2015b)

    ADS  Google Scholar 

  • M. Aguilar, L. Ali Cavasonza, B. Alpat et al., Antiproton flux, antiproton-to-proton flux ratio, and properties of elementary particle fluxes in primary cosmic rays measured with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 117(9), 091103 (2016a)

    ADS  Google Scholar 

  • M. Aguilar, L. Ali Cavasonza, G. Ambrosi et al., Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 117(23), 231102 (2016b)

    ADS  Google Scholar 

  • F. Aharonian, R. Yang, E. de Oña Wilhelmi, Massive stars as major factories of Galactic cosmic rays. Nat. Astron. 3, 561–567 (2019)

    ADS  Google Scholar 

  • M. Ajello, A. Albert, A. Allafort et al., Impulsive and long duration high-energy gamma-ray emission from the very bright 2012 March 7 solar flares. Astrophys. J. 789, 20 (2014)

    ADS  Google Scholar 

  • R. Aloisio, P. Blasi, Propagation of galactic cosmic rays in the presence of self-generated turbulence. J. Cosmol. Astropart. Phys. 2013(7), 001 (2013)

    Google Scholar 

  • Y. Ao, C. Henkel, K.M. Menten et al., The thermal state of molecular clouds in the Galactic center: evidence for non-photon-driven heating. Astron. Astrophys. 550, A135 (2013)

    Google Scholar 

  • A.T. Araudo, G.E. Romero, V. Bosch-Ramon, J.M. Paredes, Gamma-ray emission from massive young stellar objects. Astron. Astrophys. 476(3), 1289–1295 (2007)

    ADS  Google Scholar 

  • J.W. Armstrong, B.J. Rickett, S.R. Spangler, Electron density power spectrum in the local interstellar medium. Astrophys. J. 443, 209 (1995)

    ADS  Google Scholar 

  • D. Atri, B. Hariharan, J.M. Grießmeier, Galactic cosmic ray-induced radiation dose on terrestrial exoplanets. Astrobiology 13(10), 910–919 (2013)

    ADS  Google Scholar 

  • W. Baade, F. Zwicky, Remarks on super-novae and cosmic rays. Phys. Rev. 46(1), 76–77 (1934)

    ADS  Google Scholar 

  • X.L. Bacalla, H. Linnartz, N.L.J. Cox et al., The EDIBLES survey. IV. Cosmic ray ionization rates in diffuse clouds from near-ultraviolet observations of interstellar OH+. Astron. Astrophys.622, A31 (2019)

    Google Scholar 

  • X.N. Bai, J.M. Stone, Effect of ambipolar diffusion on the nonlinear evolution of magnetorotational instability in weakly ionized disks. Astrophys. J. 736, 144 (2011)

    ADS  Google Scholar 

  • X.N. Bai, E.C. Ostriker, I. Plotnikov, J.M. Stone, Magnetohydrodynamic-Particle-in-Cell Simulations of the Cosmic-Ray Streaming Instability: Linear Growth and Quasi-linear Evolution. ArXiv e-prints (2019)

  • S.A. Balbus, J.F. Hawley, A powerful local shear instability in weakly magnetized disks. I – Linear analysis. II – Nonlinear evolution. Astrophys. J. 376, 214–233 (1991)

    ADS  Google Scholar 

  • J. Bally, J. Aguirre, C. Battersby et al., The Bolocam Galactic Plane Survey: \(\lambda = 1.1\) and 0.35 mm dust continuum emission in the Galactic center region. Astrophys. J. 721, 137 (2010)

    ADS  Google Scholar 

  • A.T. Barnes, S.N. Longmore, C. Battersby et al., Star formation rates and efficiencies in the Galactic centre. Mon. Not. R. Astron. Soc.469, 2263–2285 (2017)

    ADS  Google Scholar 

  • R. Beck, Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 24, 4 (2015)

    ADS  Google Scholar 

  • A.R. Bell, Cosmic ray acceleration. Astropart. Phys. 43, 56–70 (2013)

    ADS  Google Scholar 

  • A. Belloche, P. André, D. Despois, S. Blinder, Molecular line study of the very young protostar IRAM 04191 in Taurus: infall, rotation, and outflow. Astron. Astrophys. 393, 927–947 (2002)

    ADS  Google Scholar 

  • M.T. Beltrán, R. Cesaroni, L. Moscadelli et al., Binary system and jet precession and expansion in G35.20-0.74N. Astron. Astrophys. 593, A49 (2016)

    Google Scholar 

  • C.J. Bennett, R.I. Kaiser, On the formation of glycolaldehyde (HCOCH2OH) and methyl formate (HCOOCH3) in interstellar ice analogs. Astrophys. J.661(2), 899–909 (2007)

    ADS  Google Scholar 

  • E.G. Berezhko, D.C. Ellison, A simple model of nonlinear diffusive shock acceleration. Astrophys. J. 526, 385–399 (1999)

    ADS  Google Scholar 

  • E.G. Berezhko, L.T. Ksenofontov, Cosmic rays, radio and gamma-ray emission from the remnant of supernova 1987A. Astron. Lett. 26, 639–656 (2000)

    ADS  Google Scholar 

  • V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.S. Ptuskin,Astrophysics of Cosmic Rays (North-Holland, Amsterdam, 1990)

    Google Scholar 

  • H.A. Bethe, L.C. Maximon, Theory of bremsstrahlung and pair production. I. Differential cross section. Phys. Rev. 93, 768–784 (1954)

    ADS  MathSciNet  MATH  Google Scholar 

  • W.R. Binns, M.E. Wiedenbeck, M. Arnould et al., OB associations, Wolf Rayet stars, and the origin of Galactic cosmic rays. Space Sci. Rev.130(1–4), 439–449 (2007)

    ADS  Google Scholar 

  • T.G. Bisbas, E.F. van Dishoeck, P.P. Papadopoulos et al., Cosmic-ray induced destruction of CO in star-forming galaxies. Astrophys. J.839(2), 90 (2017)

    ADS  Google Scholar 

  • O.M. Blaes, S.A. Balbus, Local shear instabilities in weakly ionized, weakly magnetized disks. Astrophys. J. 421, 163 (1994)

    ADS  Google Scholar 

  • R.D. Blandford, D.G. Payne, Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc. 199, 883–903 (1982)

    ADS  MATH  Google Scholar 

  • P. Blasi, The origin of Galactic cosmic rays. Astron. Astrophys. Rev. 21, 70 (2013)

    ADS  Google Scholar 

  • G.R. Blumenthal, R.J. Gould, Bremsstrahlung, synchrotron radiation, and Compton scattering of high-energy electrons traversing dilute gases. Rev. Mod. Phys. 42, 237–271 (1970)

    ADS  Google Scholar 

  • A.D. Bolatto, M. Wolfire, A.K. Leroy, The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51(1), 207–268 (2013)

    ADS  Google Scholar 

  • V. Bosch-Ramon, G.E. Romero, A.T. Araudo, J.M. Paredes, Massive protostars as gamma-ray sources. Astron. Astrophys. 511, A8 (2010)

    ADS  Google Scholar 

  • Y.M. Butt, A.M. Bykov, A cosmic-ray resolution to the superbubble energy crisis. Astrophys. J. 677(1), L21 (2008)

    ADS  Google Scholar 

  • A.M. Bykov, Particle acceleration and nonthermal phenomena in superbubbles. Space Sci. Rev. 99, 317–326 (2001)

    ADS  Google Scholar 

  • A.M. Bykov, Nonthermal particles and photons in starburst regions and superbubbles. Astron. Astrophys. Rev. 22, 77 (2014)

    ADS  Google Scholar 

  • A.M. Bykov, I.N. Toptygin, Effect of shocks on interstellar turbulence and cosmic-ray dynamics. Astrophys. Space Sci. 138(2), 341–354 (1987)

    ADS  Google Scholar 

  • A. Caratti o Garatti, J. Eislöffel, D. Froebrich et al., First detection of acceleration and deceleration in protostellar jets? Time variability in the Chamaeleontis II outflows. Astron. Astrophys. 502(2), 579–597 (2009)

    ADS  Google Scholar 

  • P. Caselli, C. Ceccarelli, Our astrochemical heritage. Astron. Astrophys. Rev. 20, 56 (2012)

    ADS  Google Scholar 

  • M. Casse, J.A. Paul, Local gamma rays and cosmic-ray acceleration by supersonic stellar winds. Astrophys. J. 237, 236–243 (1980)

    ADS  Google Scholar 

  • C. Ceccarelli, A. Castets, E. Caux et al., The structure of the collapsing envelope around the low-mass protostar IRAS 16293-2422. Astron. Astrophys. 355, 1129–1137 (2000)

    ADS  Google Scholar 

  • C. Ceccarelli, C. Dominik, A. López-Sepulcre et al., Herschel finds evidence for stellar wind particles in a protostellar envelope: is this what happened to the young Sun? Astrophys. J. 790(1), L1 (2014)

    ADS  Google Scholar 

  • C. Cecchi-Pestellini, S. Aiello, Cosmic ray induced photons in dense interstellar clouds. Mon. Not. R. Astron. Soc. 258, 125–133 (1992)

    ADS  Google Scholar 

  • C.J. Cesarsky, H.J. Völk, Cosmic ray penetration into molecular clouds. Astron. Astrophys. 70, 367 (1978)

    ADS  Google Scholar 

  • F.F. Chen, Introduction to Plasma Physics (Plenum Press, New York, 1974)

    Google Scholar 

  • P.C. Clark, S.C.O. Glover, S.E. Ragan, R. Shetty, R.S. Klessen, On the temperature structure of the Galactic center cloud G0.253+0.016. Astrophys. J. 768, L34 (2013)

    ADS  Google Scholar 

  • L.I. Cleeves, F.C. Adams, E.A. Bergin, Exclusion of cosmic rays in protoplanetary disks: stellar and magnetic effects. Astrophys. J. 772(1), 5 (2013)

    ADS  Google Scholar 

  • L.I. Cleeves, E.A. Bergin, F.C. Adams, Exclusion of cosmic rays in protoplanetary disks. II. Chemical gradients and observational signatures. Astrophys. J. 794, 123 (2014)

    ADS  Google Scholar 

  • L.I. Cleeves, E.A. Bergin, C. Qi, F.C. Adams, K.I. Öberg, Constraining the X-ray and cosmic-ray ionization chemistry of the TW Hya protoplanetary disk: evidence for a sub-interstellar cosmic-ray rate. Astrophys. J. 799, 204 (2015)

    ADS  Google Scholar 

  • B. Commerçon, A. Marcowith, Y. Dubois, Cosmic-ray propagation in the bi-stable interstellar medium. I. Conditions for cosmic-ray trapping. Astron. Astrophys. 622, A143 (2019)

    ADS  Google Scholar 

  • R.L. Cooper, M.A. Guerrero et al., Energy crisis in the superbubble DEM L192 (N51D). Astrophys. J. 605(2), 751–758 (2004)

    ADS  Google Scholar 

  • T.E. Cravens, A. Dalgarno, Ionization, dissociation, and heating efficiencies of cosmic rays in a gas of molecular hydrogen. Astrophys. J.219, 750–752 (1978)

    ADS  Google Scholar 

  • R.M. Crutcher, Magnetic fields in molecular clouds. Annu. Rev. Astron. Astrophys. 50, 29–63 (2012)

    ADS  Google Scholar 

  • A.C. Cummings, E.C. Stone, B.C. Heikkila et al., Galactic cosmic rays in the local interstellar medium: Voyager 1 observations and model results. Astrophys. J. 831, 18 (2016)

    ADS  Google Scholar 

  • A. Dalgarno, M. Yan, W. Liu, Electron energy deposition in a gas mixture of atomic and molecular hydrogen and helium. Astrophys. J. Suppl. Ser.125, 237–256 (1999)

    ADS  Google Scholar 

  • A. Dar, A. Laor, N.J. Shaviv, Life extinctions by cosmic ray jets. Phys. Rev. Lett. 80(26), 5813–5816 (1998)

    ADS  Google Scholar 

  • E.M. de Gouveia Dal Pino, G. Kowal, Particle Acceleration by Magnetic Reconnection. Astrophysics and Space Science Library, vol. 407 (2015), p. 373

    Google Scholar 

  • V.A. Dogiel, D.O. Chernyshov, A.V. Ivlev et al., Gamma-ray emission from molecular clouds generated by penetrating cosmic rays. Astrophys. J. 868(2), 114 (2018)

    ADS  Google Scholar 

  • B.T. Draine, Physics of the Interstellar and Intergalactic Medium (2011)

    MATH  Google Scholar 

  • B.T. Draine, B. Sutin, Collisional charging of interstellar grains. Astrophys. J. 320, 803 (1987)

    ADS  Google Scholar 

  • L.O. Drury, An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys.46(8), 973–1027 (1983)

    ADS  Google Scholar 

  • K. El-Badry, E.C. Ostriker, C.G. Kim, E. Quataert, D.R. Weisz, Evolution of supernovae-driven superbubbles with conduction and cooling. Mon. Not. R. Astron. Soc. 490(2), 1961–1990 (2019)

    ADS  Google Scholar 

  • B.G. Elmegreen, Magnetic diffusion and ionization fractions in dense molecular clouds: the role of charged grains. Astrophys. J. 232, 729–739 (1979)

    ADS  Google Scholar 

  • R. Farber, M. Ruszkowski, H.Y.K. Yang, E.G. Zweibel, Impact of cosmic-ray transport on galactic winds. Astrophys. J. 856, 112 (2018)

    ADS  Google Scholar 

  • M. Fatuzzo, F.C. Adams, Effects of turbulence on cosmic ray propagation in protostars and young star/disk systems. Astrophys. J. 787(1), 26 (2014)

    ADS  Google Scholar 

  • C. Favre, C. Ceccarelli, A. López-Sepulcre et al., SOLIS IV. Hydrocarbons in the OMC-2 FIR4 region, a probe of energetic particle irradiation of the region. Astrophys. J. 859(2), 136 (2018)

    ADS  Google Scholar 

  • E.D. Feigelson, G.P. Garmire, S.H. Pravdo, Magnetic flaring in the pre-main-sequence Sun and implications for the early solar system. Astrophys. J.572(1), 335–349 (2002)

    ADS  Google Scholar 

  • K.M. Ferrière, The interstellar environment of our galaxy. Rev. Mod. Phys. 73(4), 1031–1066 (2001)

    ADS  Google Scholar 

  • D. Fielding, E. Quataert, D. Martizzi, C.A. Faucher-Giguère, How supernovae launch galactic winds? Mon. Not. R. Astron. Soc. 470(1), L39–L43 (2017)

    ADS  Google Scholar 

  • K.M. Fierlinger, A. Burkert, E. Ntormousi et al., Stellar feedback efficiencies: supernovae versus stellar winds. Mon. Not. R. Astron. Soc.456(1), 710–730 (2016)

    ADS  Google Scholar 

  • M. Flock, T. Henning, H. Klahr, Turbulence in weakly ionized protoplanetary disks. Astrophys. J. 761, 95 (2012)

    ADS  Google Scholar 

  • F. Fontani, C. Ceccarelli, C. Favre et al., Seeds of Life in Space (SOLIS). I. Carbon-chain growth in the Solar-type protocluster OMC2-FIR4. Astron. Astrophys. 605, A57 (2017)

    Google Scholar 

  • A. Frank, T.P. Ray, S. Cabrit et al., Jets and outflows from star to cloud: observations confront theory, in Protostars and Planets VI, ed. by H. Beuther, R.S. Klessen, C.P. Dullemond, T. Henning (2014), p. 451

    Google Scholar 

  • F. Fraschetti, J.J. Drake, O. Cohen, C. Garraffo, Mottled protoplanetary disk ionization by magnetically channeled T Tauri star energetic particles. Astrophys. J. 853, 112 (2018)

    ADS  Google Scholar 

  • B.A.L. Gaches, S.S.R. Offner, Exploration of cosmic-ray acceleration in protostellar accretion shocks and a model for ionization rates in embedded protoclusters. Astrophys. J. 861, 87 (2018)

    ADS  Google Scholar 

  • B.A.L. Gaches, S.S.R. Offner, T.G. Bisbas, The astrochemical impact of cosmic rays in protoclusters. I. Molecular cloud chemistry. Astrophys. J. 878(2), 105 (2019a)

    ADS  Google Scholar 

  • B.A.L. Gaches, S.S.R. Offner, T.G. Bisbas, The astrochemical impact of cosmic rays in protoclusters. II. CI-to-H2 and CO-to-H2 conversion factors. Astrophys. J. 883(2), 190 (2019b)

    ADS  Google Scholar 

  • C.F. Gammie, Layered accretion in T Tauri disks. Astrophys. J.457, 355 (1996)

    ADS  Google Scholar 

  • W.M. Geist, Atomic mass dependence in soft and hard pA collisions. Nucl. Phys. A 525, 149–164 (1991)

    ADS  Google Scholar 

  • A. Ginsburg, C. Henkel, Y. Ao et al., Dense gas in the Galactic central molecular zone is warm and heated by turbulence. Astron. Astrophys.586, A50 (2016)

    Google Scholar 

  • V.L. Ginzburg, S.I. Syrovatskii, The Origin of Cosmic Rays (1964)

    Google Scholar 

  • J.M. Girart, R. Rao, D.P. Marrone, Magnetic fields in the formation of Sun-like stars. Science 313(5788), 812–814 (2006)

    ADS  Google Scholar 

  • J.M. Girart, M.T. Beltrán, Q. Zhang, R. Rao, R. Estalella, Magnetic fields in the formation of massive stars. Science 324(5933), 1408 (2009)

    ADS  Google Scholar 

  • P. Girichidis, T. Naab, S. Walch et al., Launching cosmic-ray-driven outflows from the magnetized interstellar medium. Astrophys. J. 816, L19 (2016)

    ADS  Google Scholar 

  • P. Girichidis, T. Naab, M. Hanasz, S. Walch, Cooler and smoother – the impact of cosmic rays on the phase structure of galactic outflows. Mon. Not. R. Astron. Soc. 479, 3042–3067 (2018)

    ADS  Google Scholar 

  • P. Girichidis, C. Pfrommer, M. Hanasz, T. Naab, Spectrally resolved cosmic ray hydrodynamics – I. Spectral scheme. Mon. Not. R. Astron. Soc. 491, 993–1007 (2019)

    ADS  Google Scholar 

  • A.E. Glassgold, W.D. Langer, Model calculations for diffuse molecular clouds. Astrophys. J. 193, 73–91 (1974)

    ADS  Google Scholar 

  • A.E. Glassgold, D. Galli, M. Padovani, Cosmic-ray and X-ray heating of interstellar clouds and protoplanetary disks. Astrophys. J. 756(2), 157 (2012)

    ADS  Google Scholar 

  • G. Gloeckler, L.A. Fisk, More evidence that Voyager 1 is still in the heliosphere. Astrophys. J. 806(2), L27 (2015)

    ADS  Google Scholar 

  • S.C.O. Glover, P.C. Clark, Star formation in metal-poor gas clouds. Mon. Not. R. Astron. Soc. 426, 377–388 (2012)

    ADS  Google Scholar 

  • P.F. Goldsmith, D. Li, H I narrow self-absorption in dark clouds: correlations with molecular gas and implications for cloud evolution and star formation. Astrophys. J. 622(2), 938–958 (2005)

    ADS  Google Scholar 

  • A.I. Gómez-Ruiz, A. Gusdorf, S. Leurini et al., High-J CO emission in the Cepheus E protostellar outflow observed with SOFIA/GREAT. Astron. Astrophys. 542, L9 (2012)

    ADS  Google Scholar 

  • E. González-Alfonso, J. Fischer, S. Bruderer et al., Excited OH+, H2O+, and H3O+ in NGC 4418 and Arp 220. Astron. Astrophys. 550, A25 (2013)

    Google Scholar 

  • E. González-Alfonso, J. Fischer, S. Bruderer et al., Outflowing OH+ in Markarian 231: the ionization rate of the molecular gas. Astrophys. J. 857, 66 (2018)

    ADS  Google Scholar 

  • M. Goto, N. Indriolo, T.R. Geballe, T. Usuda, \(\mbox{H}_{3}^{+}\) spectroscopy and the ionization rate of molecular hydrogen in the central few parsecs of the Galaxy. J. Phys. Chem. A 117, 9919–9930 (2013)

    Google Scholar 

  • I.A. Grenier, J.H. Black, A.W. Strong, The nine lives of cosmic rays in galaxies. Annu. Rev. Astron. Astrophys. 53, 199–246 (2015)

    ADS  Google Scholar 

  • O. Gressel, R.P. Nelson, N.J. Turner, Dead zones as safe havens for planetesimals: influence of disc mass and external magnetic field. Mon. Not. R. Astron. Soc. 422, 1140–1159 (2012)

    ADS  Google Scholar 

  • J.M. Grießmeier, A. Stadelmann, U. Motschmann et al., Cosmic ray impact on extrasolar Earth-like planets in close-in habitable zones. Astrobiology 5(5), 587–603 (2005)

    ADS  Google Scholar 

  • J.M. Grießmeier, F. Tabataba-Vakili, A. Stadelmann, J.L. Grenfell, D. Atri, Galactic cosmic rays on extrasolar Earth-like planets. I. Cosmic ray flux. Astron. Astrophys. 581, A44 (2015)

    Google Scholar 

  • J.M. Grießmeier, F. Tabataba-Vakili, A. Stadelmann, J.L. Grenfell, D. Atri, Galactic cosmic rays on extrasolar Earth-like planets. II. Atmospheric implications. Astron. Astrophys. 587, A159 (2016)

    Google Scholar 

  • M. Hanasz, H. Lesch, Incorporation of cosmic ray transport into the ZEUS MHD code. Application for studies of Parker instability in the ISM. Astron. Astrophys. 412, 331–339 (2003)

    ADS  Google Scholar 

  • M. Hanasz, H. Lesch, T. Naab et al., Cosmic rays can drive strong outflows from gas-rich high-redshift disk galaxies. Astrophys. J. 777, L38 (2013)

    ADS  Google Scholar 

  • P. Hartigan, J. Morse, Collimation, proper motions, and physical conditions in the HH 30 jet from Hubble Space Telescope slitless spectroscopy. Astrophys. J. 660(1), 426–440 (2007)

    ADS  Google Scholar 

  • M. Haverkorn, Magnetic fields in the Milky Way, in Magnetic Fields in Diffuse Media. Astrophysics and Space Science Library, vol. 407, ed. by A. Lazarian, E.M. de Gouveia Dal Pino, C. Melioli (2015), p. 483

    Google Scholar 

  • S. Hayakawa, Cosmic Ray Physics. Nuclear and Astrophysical Aspects (1969)

    Google Scholar 

  • C. Heiles, H I shells and supershells. Astrophys. J. 229, 533–537 (1979)

    ADS  Google Scholar 

  • C. Heiles, Supernovae versus models of the interstellar medium and the gaseous halo. Astrophys. J. 315, 555–566 (1987)

    ADS  Google Scholar 

  • J.D. Henshaw, S.N. Longmore, J.M.D. Kruijssen et al., Molecular gas kinematics within the central 250 pc of the Milky Way. Mon. Not. R. Astron. Soc. 457, 2675–2702 (2016)

    ADS  Google Scholar 

  • I. Heywood, F. Camilo, W.D. Cotton et al., Inflation of 430-parsec bipolar radio bubbles in the Galactic centre by an energetic event. Nature573(7773), 235–237 (2019)

    ADS  Google Scholar 

  • M.G. Hoare, C.R. Purcell, E.B. Churchwell et al., The coordinated radio and infrared survey for high-mass star formation (the CORNISH survey). I. Survey design. Publ. Astron. Soc. Pac. 124, 939 (2012)

    ADS  Google Scholar 

  • D.J. Hollenbach, A.G.G.M. Tielens, Photodissociation regions in the interstellar medium of galaxies. Rev. Mod. Phys. 71(1), 173–230 (1999)

    ADS  Google Scholar 

  • C.L.H. Hull, R.L. Plambeck, W. Kwon et al., TADPOL: a 1.3 mm survey of dust polarization in star-forming cores and regions. Astrophys. J. Suppl. Ser. 213(1), 13 (2014)

    ADS  Google Scholar 

  • C.L.H. Hull, J.M. Girart, Ł. Tychoniec et al., ALMA observations of dust polarization and molecular line emission from the class 0 protostellar source Serpens SMM1. Astrophys. J. 847(2), 92 (2017)

    ADS  Google Scholar 

  • C.L.H. Hull, H. Yang, Z.Y. Li et al., ALMA observations of polarization from dust scattering in the IM Lup protoplanetary disk. Astrophys. J. 860(1), 82 (2018)

    ADS  Google Scholar 

  • N. Indriolo, B.J. McCall, Investigating the cosmic-ray ionization rate in the Galactic diffuse interstellar medium through observations of \(\text{H}^{+}_{3}\). Astrophys. J. 745, 91 (2012)

    ADS  Google Scholar 

  • N. Indriolo, T.R. Geballe, T. Oka, B.J. McCall, \(\mbox{H}^{+}_{3}\) in diffuse interstellar clouds: a tracer for the cosmic-ray ionization rate. Astrophys. J. 671, 1736–1747 (2007)

    ADS  Google Scholar 

  • N. Indriolo, D.A. Neufeld, M. Gerin et al., Herschel survey of Galactic OH+, h2o+, and h3o+: probing the molecular hydrogen fraction and cosmic-ray ionization rate. Astrophys. J.800, 40 (2015)

    ADS  Google Scholar 

  • N. Indriolo, E.A. Bergin, E. Falgarone et al., Constraints on the cosmic-ray ionization rate in the \(z{\sim}2.3\) lensed galaxies SMM J2135-0102 and SDP 17b from observations of OH+ and H2O+. Astrophys. J.865, 127 (2018)

    ADS  Google Scholar 

  • A.V. Ivlev, M. Padovani, D. Galli, P. Caselli, Interstellar dust charging in dense molecular clouds: cosmic ray effects. Astrophys. J. 812(2), 135 (2015)

    ADS  Google Scholar 

  • A.V. Ivlev, V.A. Dogiel, D.O. Chernyshov et al., Penetration of cosmic rays into dense molecular clouds: role of diffuse envelopes. Astrophys. J. 855, 23 (2018)

    ADS  Google Scholar 

  • Y.F. Jiang, S.P. Oh, A new numerical scheme for cosmic-ray transport. Astrophys. J. 854, 5 (2018)

    ADS  Google Scholar 

  • M. Joos, P. Hennebelle, A. Ciardi, Protostellar disk formation and transport of angular momentum during magnetized core collapse. Astron. Astrophys. 543, A128 (2012)

    ADS  Google Scholar 

  • S.A. Kaplan, S.B. Pikel’ner, Matter in Space – The Interstellar Medium (1970)

    Google Scholar 

  • J. Kauffmann, T. Pillai, Q. Zhang et al., The Galactic center molecular cloud survey. I. A steep linewidth-size relation and suppression of star formation. Astron. Astrophys. 603, A89 (2017)

    Google Scholar 

  • E. Keto, P. Caselli, The different structures of the two classes of starless cores. Astrophys. J. 683(1), 238–247 (2008)

    ADS  Google Scholar 

  • C.-G. Kim, E.C. Ostriker, Numerical simulations of multiphase winds and fountains from star-forming galactic disks. I. Solar neighborhood TIGRESS model. Astrophys. J. 853, 173 (2018)

    ADS  Google Scholar 

  • C.G. Kim, E.C. Ostriker, R. Raileanu, Superbubbles in the multiphase ISM and the loading of Galactic winds. Astrophys. J. 834(1), 25 (2017)

    ADS  Google Scholar 

  • S. Krakau, R. Schlickeiser, Pion production momentum loss of cosmic ray hadrons. Astrophys. J. 802, 114 (2015)

    ADS  Google Scholar 

  • N. Krieger, J. Ott, H. Beuther et al., The Survey of Water and Ammonia in the Galactic center (SWAG): molecular cloud evolution in the central molecular zone. Astrophys. J. 850, 77 (2017)

    ADS  Google Scholar 

  • J.M.D. Kruijssen, S.N. Longmore, Comparing molecular gas across cosmic time-scales: the Milky Way as both a typical spiral galaxy and a high-redshift galaxy analogue. Mon. Not. R. Astron. Soc. 435, 2598–2603 (2013)

    ADS  Google Scholar 

  • J.M.D. Kruijssen, S.N. Longmore, B.G. Elmegreen et al., What controls star formation in the central 500 pc of the Galaxy? Mon. Not. R. Astron. Soc. 440, 3370–3391 (2014)

    ADS  Google Scholar 

  • M.R. Krumholz, Star formation in atomic gas. Astrophys. J.759(1), 9 (2012)

    ADS  Google Scholar 

  • M.R. Krumholz, J.M.D. Kruijssen, R.M. Crocker, A dynamical model for gas flows, star formation and nuclear winds in galactic centres. Mon. Not. R. Astron. Soc. 466, 1213–1233 (2017)

    ADS  Google Scholar 

  • M.R. Krumholz, C.F. McKee, J. Bland-Hawthorn, Star clusters across cosmic time. Annu. Rev. Astron. Astrophys. 57, 227–303 (2019)

    ADS  Google Scholar 

  • R. Kulsrud, W.P. Pearce, The effect of wave-particle interactions on the propagation of cosmic rays. Astrophys. J. 156, 445 (1969)

    ADS  Google Scholar 

  • S. Kurtz, Hypercompact HII regions, in Massive Star Birth: A Crossroads of Astrophysics. IAU Symposium, vol. 227, ed. by R. Cesaroni, M. Felli, E. Churchwell, M. Walmsley (2005), pp. 111–119

    Google Scholar 

  • P.O. Lagage, C.J. Cesarsky, Cosmic-ray shock acceleration in the presence of self-excited waves. Astron. Astrophys. 118(2), 223–228 (1983)

    ADS  MATH  Google Scholar 

  • F. Le Petit, M. Ruaud, E. Bron et al., Physical conditions in the central molecular zone inferred by \(\text{H}_{3}^{+}\). Astron. Astrophys. 585, A105 (2016)

    Google Scholar 

  • J.W.Y. Lee, C.L.H. Hull, S.S.R. Offner, Synthetic observations of magnetic fields in protostellar cores. Astrophys. J. 834(2), 201 (2017)

    ADS  Google Scholar 

  • B. Lefloch, S. Cabrit, G. Busquet et al., The CHESS survey of the L1157-B1 shock region: CO spectral signatures of jet-driven bow shocks. Astrophys. J. 757(2), L25 (2012)

    ADS  Google Scholar 

  • I. Lerche, Unstable magnetosonic waves in a relativistic plasma. Astrophys. J. 147, 689 (1967)

    ADS  Google Scholar 

  • D. Li, P.F. Goldsmith, H I narrow self-absorption in dark clouds. Astrophys. J. 585(2), 823–839 (2003)

    ADS  Google Scholar 

  • Z.Y. Li, R. Krasnopolsky, H. Shang, Does magnetic-field-rotation misalignment solve the magnetic braking catastrophe in protostellar disk formation? Astrophys. J. 774, 82 (2013)

    ADS  Google Scholar 

  • R.E. Lingenfelter, Cosmic rays from supernova remnants and superbubbles. Adv. Space Res. 62(10), 2750–2763 (2018)

    ADS  Google Scholar 

  • S.N. Longmore, J. Bally, L. Testi et al., Variations in the Galactic star formation rate and density thresholds for star formation. Mon. Not. R. Astron. Soc. 429, 987–1000 (2013)

    ADS  Google Scholar 

  • M.M. Mac Low, R. McCray, Superbubbles in disk galaxies. Astrophys. J. 324, 776 (1988)

    ADS  Google Scholar 

  • K. Mannheim, R. Schlickeiser, Interactions of cosmic ray nuclei. Astron. Astrophys. 286, 983–996 (1994)

    ADS  Google Scholar 

  • S.A. Mao, E.C. Ostriker, Galactic disk winds driven by cosmic ray pressure. Astrophys. J. 854, 89 (2018)

    ADS  Google Scholar 

  • A. Marcowith, A. Bret, A. Bykov et al., The microphysics of collisionless shock waves. Rep. Prog. Phys. 79, 046901 (2016)

    ADS  Google Scholar 

  • H. Masunaga, I. Si, A radiation hydrodynamic model for protostellar collapse. II. The second collapse and the birth of a protostar. Astrophys. J. 531(1), 350–365 (2000)

    ADS  Google Scholar 

  • L. Maurri, F. Bacciotti, L. Podio et al., Physical properties of the jet from DG Tauri on sub-arcsecond scales with HST/STIS. Astron. Astrophys.565, A110 (2014)

    Google Scholar 

  • W.H. McCutcheon, W.L.H. Shuter, R.S. Booth, Observations of the 21-cm line in dark clouds. Mon. Not. R. Astron. Soc. 185, 755–770 (1978)

    ADS  Google Scholar 

  • F. Meng, Á. Sánchez-Monge, P. Schilke et al., The physical and chemical structure of Sagittarius B2. Astron. Astrophys. 588, A143 (2019)

    Google Scholar 

  • L. Mestel, J.L. Spitzer, Star formation in magnetic dust clouds. Mon. Not. R. Astron. Soc. 116, 503 (1956)

    ADS  MathSciNet  MATH  Google Scholar 

  • G.E. Miller, J.M. Scalo, The initial mass function and stellar birthrate in the solar neighborhood. Astrophys. J. Suppl. Ser. 41, 513–547 (1979)

    ADS  Google Scholar 

  • A.S. Montgomery, B. Bates, R.D. Davies, Studies of H I self-absorption in the Riegel & Crutcher cold cloud. Mon. Not. R. Astron. Soc. 273(2), 449–460 (1995)

    ADS  Google Scholar 

  • G.E. Morfill, H.J. Völk, M.A. Lee, On the effect of directional medium-scale interplanetary variations on the diffusion of galactic cosmic rays and their solar cycle variation. J. Geophys. Res. 81, 5841–5852 (1976)

    ADS  Google Scholar 

  • G. Morlino, S. Gabici, Cosmic ray penetration in diffuse clouds. Mon. Not. R. Astron. Soc. 451, L100–L104 (2015)

    ADS  Google Scholar 

  • M. Morris, E. Serabyn, The Galactic center environment. Annu. Rev. Astron. Astrophys. 34, 645–702 (1996)

    ADS  Google Scholar 

  • A. Mücke, B.S. Koribalski, A.F.J. Moffat, M.F. Corcoran, I.R. Stevens, Australia telescope compact array radio imaging of the proplyd-like objects in the giant H II region NGC 3603. Astrophys. J. 571, 366–377 (2002)

    ADS  Google Scholar 

  • S. Muller, H.S.P. Müller, J.H. Black et al., OH+ and H2O+ absorption toward PKS 1830-211. Astron. Astrophys. 595, A128 (2016)

    Google Scholar 

  • P. Munar-Adrover, J.M. Paredes, G.E. Romero, A study of the association of Fermi sources with massive young galactic objects. Astron. Astrophys. 530, A72 (2011)

    ADS  Google Scholar 

  • G. Nandakumar, V.S. Veena, S. Vig et al., Star-forming activity in the H II regions associated with the IRAS 17160-3707 complex. Astron. J.152, 146 (2016)

    ADS  Google Scholar 

  • A. Neronov, D. Malyshev, D.V. Semikoz, Cosmic-ray spectrum in the local Galaxy. Astron. Astrophys. 606, A22 (2017)

    ADS  Google Scholar 

  • D.A. Neufeld, M.G. Wolfire, The cosmic-ray ionization rate in the galactic disk, as determined from observations of molecular ions. Astrophys. J.845(2), 163 (2017)

    ADS  Google Scholar 

  • B. Nisini, F. Bacciotti, T. Giannini et al., A combined optical/infrared spectral diagnostic analysis of the HH1 jet. Astron. Astrophys.441(1), 159–170 (2005)

    ADS  Google Scholar 

  • K.K. Nobukawa, M. Nobukawa, K. Koyama et al., Evidence for a neutral iron line generated by MeV protons from supernova remnants interacting with molecular clouds. Astrophys. J. 854(2), 87 (2018)

    ADS  Google Scholar 

  • C.A. Norman, A. Ferrara, The turbulent interstellar medium: generalizing to a scale-dependent phase continuum. Astrophys. J. 467, 280 (1996)

    ADS  Google Scholar 

  • P. Nutzman, D. Charbonneau, Design considerations for a ground-based transit search for habitable planets orbiting M dwarfs. Publ. Astron. Soc. Pac. 120(865), 317 (2008)

    ADS  Google Scholar 

  • K.I. Öberg, R.T. Garrod, E.F. van Dishoeck, H. Linnartz, Formation rates of complex organics in UV irradiated CH3OH-rich ices. I. Experiments. Astron. Astrophys. 504(3), 891–913 (2009a)

    ADS  Google Scholar 

  • K.I. Öberg, H. Linnartz, R. Visser, E.F. van Dishoeck, Photodesorption of ices. II. H2O and D2O. Astrophys. J. 693(2), 1209–1218 (2009b)

    ADS  Google Scholar 

  • K.I. Öberg, E.F. van Dishoeck, H. Linnartz, Photodesorption of ices I: CO, N2, and CO2. Astron. Astrophys. 496(1), 281–293 (2009c)

    ADS  Google Scholar 

  • K.I. Öberg, E.F. van Dishoeck, H. Linnartz, S. Andersson, The effect of H2O on ice photochemistry. Astrophys. J.718(2), 832–840 (2010)

    ADS  Google Scholar 

  • L. O’C Drury, P. Duffy, J.G. Kirk, Limits on diffusive shock acceleration in dense and incompletely ionised media. Astron. Astrophys.309, 1002–1010 (1996)

    ADS  Google Scholar 

  • S.S.R. Offner, T.G. Bisbas, S. Viti, T.A. Bell, Modeling the atomic-to-molecular transition and chemical distributions of turbulent star-forming clouds. Astrophys. J. 770, 49 (2013)

    ADS  Google Scholar 

  • S.S.R. Offner, B.A.L. Gaches, J.R. Holdship, Impact of cosmic-ray feedback on accretion and chemistry in circumstellar disks. Astrophys. J.883(2), 121 (2019)

    ADS  Google Scholar 

  • T. Oka, T.R. Geballe, M. Goto et al., The central 300 pc of the galaxy probed by infrared spectra of \(\text{H}_{3}^{+}\) and CO. I. Predominance of warm and diffuse gas and high H2 ionization rate. Astrophys. J. 883(1), 54 (2019)

    ADS  Google Scholar 

  • S. Okuzumi, Electric charging of dust aggregates and its effect on dust coagulation in protoplanetary disks. Astrophys. J. 698(2), 1122–1135 (2009)

    ADS  Google Scholar 

  • M. Osorio, A.K. Díaz-Rodríguez, G. Anglada et al., Star formation under the outflow: the discovery of a non-thermal jet from OMC-2 FIR 3 and its relationship to the deeply embedded FIR 4 protostar. Astrophys. J. 840(1), 36 (2017)

    ADS  Google Scholar 

  • M. Padovani, D. Galli, A.E. Glassgold, Cosmic-ray ionization of molecular clouds. Astron. Astrophys. 501, 619–631 (2009)

    ADS  Google Scholar 

  • M. Padovani, P. Hennebelle, D. Galli, Cosmic-ray ionisation in collapsing clouds. Astron. Astrophys. 560, A114 (2013)

    ADS  Google Scholar 

  • M. Padovani, D. Galli, P. Hennebelle, B. Commerçon, M. Joos, The role of cosmic rays on magnetic field diffusion and the formation of protostellar discs. Astron. Astrophys. 571, A33 (2014)

    ADS  Google Scholar 

  • M. Padovani, P. Hennebelle, A. Marcowith, K. Ferrière, Cosmic-ray acceleration in young protostars. Astron. Astrophys. 582, L13 (2015)

    ADS  Google Scholar 

  • M. Padovani, A. Marcowith, P. Hennebelle, K. Ferrière, Protostars: forges of cosmic rays? Astron. Astrophys. 590, A8 (2016)

    ADS  Google Scholar 

  • M. Padovani, D. Galli, A.V. Ivlev, P. Caselli, A. Ferrara, Production of atomic hydrogen by cosmic rays in dark clouds. Astron. Astrophys.619, A144 (2018a)

    ADS  Google Scholar 

  • M. Padovani, A.V. Ivlev, D. Galli, P. Caselli, Cosmic-ray ionisation in circumstellar discs. Astron. Astrophys. 614, A111 (2018b)

    ADS  Google Scholar 

  • M. Padovani, A. Marcowith, Á. Sánchez-Monge, F. Meng, P. Schilke, Non-thermal emission from cosmic rays accelerated in H II regions. Astron. Astrophys. 630, A72 (2019)

    ADS  Google Scholar 

  • R. Pakmor, C. Pfrommer, C.M. Simpson, V. Springel, Galactic winds driven by isotropic and anisotropic cosmic-ray diffusion in disk galaxies. Astrophys. J. 824, L30 (2016)

    ADS  Google Scholar 

  • E. Parizot, A. Marcowith, J. Ballet, Y.A. Gallant, Observational constraints on energetic particle diffusion in young supernovae remnants: amplified magnetic field and maximum energy. Astron. Astrophys. 453, 387–395 (2006)

    ADS  Google Scholar 

  • I. Pascucci, L. Testi, G.J. Herczeg et al., A steeper than linear disk mass-stellar mass scaling relation. Astrophys. J. 831(2), 125 (2016)

    ADS  Google Scholar 

  • D. Perez-Becker, E. Chiang, Surface layer accretion in conventional and transitional disks driven by far-ultraviolet ionization. Astrophys. J. 735, 8 (2011)

    ADS  Google Scholar 

  • C. Pfrommer, R. Pakmor, K. Schaal, C.M. Simpson, V. Springel, Simulating cosmic ray physics on a moving mesh. Mon. Not. R. Astron. Soc.465, 4500–4529 (2017)

    ADS  Google Scholar 

  • V.H.M. Phan, G. Morlino, S. Gabici, What causes the ionization rates observed in diffuse molecular clouds? The role of cosmic ray protons and electrons. Mon. Not. R. Astron. Soc. 480(4), 5167–5174 (2018)

    ADS  Google Scholar 

  • G. Ponti, R. Terrier, A. Goldwurm, G. Belanger, G. Trap, Discovery of a superluminal Fe K echo at the galactic center: the glorious past of Sgr A* preserved by molecular clouds. Astrophys. J. 714, 732–747 (2010)

    ADS  Google Scholar 

  • A.J. Porras, S.R. Federman, D.E. Welty, A.M. Ritchey, OH+ in diffuse molecular clouds. Astrophys. J. Lett. 781, L8 (2014)

    ADS  Google Scholar 

  • M.S. Potgieter, Solar modulation of cosmic rays. Living Rev. Sol. Phys. 10(1), 3 (2013)

    ADS  Google Scholar 

  • S.S. Prasad, S.P. Tarafdar, UV radiation field inside dense clouds – its possible existence and chemical implications. Astrophys. J.267, 603–609 (1983)

    ADS  Google Scholar 

  • V.S. Ptuskin, I.V. Moskalenko, F.C. Jones, A.W. Strong, V.N. Zirakashvili, Dissipation of magnetohydrodynamic waves on energetic particles: impact on interstellar turbulence and cosmic-ray transport. Astrophys. J.642(2), 902–916 (2006)

    ADS  Google Scholar 

  • C.R. Purcell, M.G. Hoare, W.D. Cotton et al., The coordinated radio and infrared survey for high-mass star formation. II. Source catalog. Astrophys. J. Suppl. Ser. 205, 1 (2013)

    ADS  Google Scholar 

  • C. Rab, M. Güdel, M. Padovani et al., Stellar energetic particle ionization in protoplanetary disks around T Tauri stars. Astron. Astrophys.603, A96 (2017)

    ADS  Google Scholar 

  • A.C. Raga, P.F. Velázquez, J. Cantó, E. Masciadri, The time-dependent ejection velocity histories of HH 34 and HH 111. Astron. Astrophys. 395, 647–656 (2002)

    ADS  Google Scholar 

  • A.C. Raga, A. Noriega-Crespo, V. Lora, K.R. Stapelfeldt, S.J. Carey, The jet/counterjet infrared symmetry of HH 34 and the size of the jet formation region. Astrophys. J. 730(2), L17 (2011)

    ADS  Google Scholar 

  • D. Rodgers-Lee, A.M. Taylor, T.P. Ray, T.P. Downes, The ionizing effect of low-energy cosmic rays from a class II object on its protoplanetary disc. Mon. Not. R. Astron. Soc. 472, 26–38 (2017)

    ADS  Google Scholar 

  • D. Rodgers-Lee, A.M. Taylor, T.P. Downes, T.P. Ray, Stellar cosmic rays as an important source of ionisation in protoplanetary disks: a disk mass dependent process. Mon. Not. R. Astron. Soc. 491, 4742–4751 (2019)

    ADS  Google Scholar 

  • A. Rodríguez-Kamenetzky, C. Carrasco-González, A. Araudo et al., The highly collimated radio jet of HH 80-81: structure and nonthermal emission. Astrophys. J. 851, 16 (2017)

    ADS  Google Scholar 

  • A.L. Rosen, L.A. Lopez, M.R. Krumholz, E. Ramirez-Ruiz, Gone with the wind: where is the missing stellar wind energy from massive star clusters? Mon. Not. R. Astron. Soc. 442(3), 2701–2716 (2014)

    ADS  Google Scholar 

  • M. Ruszkowski, H.Y.K. Yang, E. Zweibel, Global simulations of galactic winds including cosmic-ray streaming. Astrophys. J. 834, 208 (2017)

    ADS  Google Scholar 

  • M. Salem, G.L. Bryan, Cosmic ray driven outflows in global galaxy disc models. Mon. Not. R. Astron. Soc. 437, 3312–3330 (2014)

    ADS  Google Scholar 

  • Á. Sánchez-Monge, A. Palau, R. Estalella, M.T. Beltrán, J.M. Girart, Survey of intermediate/high mass star-forming regions at centimeter and millimeter wavelengths. Astron. Astrophys. 485, 497–515 (2008)

    ADS  Google Scholar 

  • Á. Sánchez-Monge, J.D. Pandian, S. Kurtz, Searching for new hypercompact H II regions. Astrophys. J. 739, L9 (2011)

    ADS  Google Scholar 

  • A. Sanna, L. Moscadelli, C. Goddi et al., Protostellar outflows at the EarliesT stages (POETS). II. A possible radio synchrotron jet associated with the EGO G035.02+0.35. Astron. Astrophys. 623, L3 (2019)

    ADS  Google Scholar 

  • M. Scheucher, J.L. Grenfell, F. Wunderlich, M. Godolt, F. Schreier, H. Rauer, New insights into cosmic-ray-induced biosignature chemistry in Earth-like atmospheres. Astrophys. J. 863(1), 6 (2018)

    ADS  Google Scholar 

  • R. Schlickeiser, Cosmic Ray Astrophysics (2002)

    Google Scholar 

  • R. Schlickeiser, M. Caglar, A. Lazarian, Cosmic rays and MHD turbulence generation in interstellar giant molecular clouds. Astrophys. J.824(2), 89 (2016)

    ADS  Google Scholar 

  • A. Schmiedeke, P. Schilke, T. Möller et al., The physical and chemical structure of Sagittarius B2. I. Three-dimensional thermal dust and free-free continuum modeling on 100 AU to 45 pc scales. Astron. Astrophys.588, A143 (2016)

    Google Scholar 

  • K.R. Schwarz, E.A. Bergin, L.I. Cleeves et al., Unlocking CO depletion in protoplanetary disks I. The warm molecular layer. ArXiv e-prints (2018)

  • F.H. Shu, F.C. Adams, S. Lizano, Star formation in molecular clouds: observation and theory. Annu. Rev. Astron. Astrophys. 25, 23–81 (1987)

    ADS  Google Scholar 

  • K. Silsbee, A.V. Ivlev, Diffusive versus free-streaming cosmic-ray transport in molecular clouds. Astrophys. J. 879(1), 14 (2019)

    ADS  Google Scholar 

  • K. Silsbee, A.V. Ivlev, M. Padovani, P. Caselli, Magnetic mirroring and focusing of cosmic rays. Astrophys. J. 863(2), 188 (2018)

    ADS  Google Scholar 

  • J.B. Simon, X.N. Bai, K.M. Flaherty, A.M. Hughes, Origin of weak turbulence in the outer regions of protoplanetary disks. Astrophys. J. 865, 10 (2018)

    ADS  Google Scholar 

  • J. Skilling, Cosmic ray streaming – III. Self-consistent solutions. Mon. Not. R. Astron. Soc. 173, 255–269 (1975)

    ADS  Google Scholar 

  • J. Skilling, A.W. Strong, Cosmic ray exclusion from dense molecular clouds. Astron. Astrophys. 53, 253–258 (1976)

    ADS  Google Scholar 

  • L. Spitzer Jr., The dynamics of the interstellar medium. I. Local equilibrium. Astrophys. J. 93, 369 (1941)

    ADS  Google Scholar 

  • S.W. Stahler, F. Palla, The Formation of Stars (2005)

    Google Scholar 

  • E.C. Stone, A.C. Cummings, F.B. McDonald et al., Voyager 1 observes low-energy galactic cosmic rays in a region depleted of heliospheric ions. Science 341, 150–153 (2013)

    ADS  Google Scholar 

  • E.C. Stone, A.C. Cummings, B.C. Heikkila, N. Lal, Cosmic ray measurements from Voyager 2 as it crossed into interstellar space. Nat. Astron.3, 1013–1018 (2019)

    ADS  Google Scholar 

  • V.S. Strelnitskii, On the nature of the strong cosmic H2O masers. Mon. Not. R. Astron. Soc. 207, 339–354 (1984)

    ADS  Google Scholar 

  • F. Tabataba-Vakili, J.L. Grenfell, J.M. Grießmeier, H. Rauer, Atmospheric effects of stellar cosmic rays on Earth-like exoplanets orbiting M-dwarfs. Astron. Astrophys. 585, A96 (2016)

    ADS  Google Scholar 

  • K. Takayanagi, Molecule formation in dense interstellar clouds. Publ. Astron. Soc. Jpn. 25, 327 (1973)

    ADS  Google Scholar 

  • G.A. Tammann, W. Loeffler, A. Schroeder, The Galactic supernova rate. Astrophys. J. Suppl. Ser. 92, 487–493 (1994)

    ADS  Google Scholar 

  • V. Tatischeff, A. Decourchelle, G. Maurin, Nonthermal X-rays from low-energy cosmic rays: application to the 6.4 keV line emission from the Arches cluster region. Astron. Astrophys. 546, A88 (2012)

    ADS  Google Scholar 

  • M. Tazzari, L. Testi, A. Natta et al., Physical properties of dusty protoplanetary disks in Lupus: evidence for viscous evolution? Astron. Astrophys. 606, A88 (2017)

    Google Scholar 

  • O. Teșileanu, S. Massaglia, A. Mignone, G. Bodo, F. Bacciotti, Time-dependent MHD shocks and line intensity ratios in the HH 30 jet: a focus on cooling function and numerical resolution. Astron. Astrophys. 507(2), 581–588 (2009)

    ADS  Google Scholar 

  • O. Teșileanu, A. Mignone, S. Massaglia, F. Bacciotti, Numerical simulations of radiative magnetized Herbig-Haro jets: the influence of pre-ionization from X-rays on emission lines. Astrophys. J. 746(1), 96 (2012)

    ADS  Google Scholar 

  • T. Thomas, C. Pfrommer, Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays. Mon. Not. R. Astron. Soc. 485, 2977–3008 (2019)

    ADS  Google Scholar 

  • A.G.G.M. Tielens, W. Hagen, Model calculations of the molecular composition of interstellar grain mantles. Astron. Astrophys. 114(2), 245–260 (1982)

    ADS  Google Scholar 

  • K. Tomisaka, S. Ikeuchi, Evolution of a superbubble driven by sequential supernova explosions in a plane-stratified gas distribution. Publ. Astron. Soc. Jpn. 38(5), 697–715 (1986)

    ADS  Google Scholar 

  • N.J. Turner, J.F. Drake, Energetic protons, radionuclides, and magnetic activity in protostellar disks. Astrophys. J. 703(2), 2152–2159 (2009)

    ADS  Google Scholar 

  • T. Umebayashi, T. Nakano, Fluxes of energetic particles and the ionization rate in very dense interstellar clouds. Publ. Astron. Soc. Jpn.33, 617 (1981)

    ADS  Google Scholar 

  • I.G. Usoskin, K. Alanko-Huotari, G.A. Kovaltsov, K. Mursula, Heliospheric modulation of cosmic rays: monthly reconstruction for 1951–2004. J. Geophys. Res. Space Phys. 110(A12), A12108 (2005)

    ADS  Google Scholar 

  • F.F.S. van der Tak, A. Weiß, L. Liu, R. Güsten, The ionization rates of galactic nuclei and disks from Herschel/HIFI observations of water and its associated ions. Astron. Astrophys. 593, A43 (2016)

    Google Scholar 

  • P.P. van der Werf, W.M. Goss, P.A. Vanden Bout, High resolution H I observations of dark clouds. I. L 134. Astron. Astrophys. 201, 311–326 (1988)

    ADS  Google Scholar 

  • V.S. Veena, S. Vig, A. Tej et al., Star formation towards the southern cometary H II region IRAS 17256-3631. Mon. Not. R. Astron. Soc.456, 2425–2445 (2016)

    ADS  Google Scholar 

  • E.E. Vos, M.S. Potgieter, New modeling of galactic proton modulation during the minimum of solar cycle 23/24. Astrophys. J. 815(2), 119 (2015)

    ADS  Google Scholar 

  • Y. Wang, S. Bihr, M. Rugel et al., Radio continuum emission in the northern Galactic plane: sources and spectral indices from the THOR survey. Astron. Astrophys. 619, A124 (2018)

    Google Scholar 

  • J.L. Ward, J.M.D. Kruijssen, H.W. Rix, Not all stars form in clusters – \(Gaia\)-DR2 uncovers the origin of OB associations. ArXiv e-prints (2019). arXiv:1910.06974

  • J.C. Weingartner, B.T. Draine, Photoelectric emission from interstellar dust: grain charging and gas heating. Astrophys. J. Suppl. Ser.134(2), 263–281 (2001)

    ADS  Google Scholar 

  • J. Wilms, A. Allen, R. McCray, On the absorption of X-rays in the interstellar medium. Astrophys. J. 542, 914–924 (2000)

    ADS  Google Scholar 

  • D.O.S. Wood, E. Churchwell, The morphologies and physical properties of ultracompact H II regions. Astrophys. J. Suppl. Ser. 69, 831–895 (1989)

    ADS  Google Scholar 

  • R. Yang, E. de Oña Wilhelmi, F. Aharonian, Probing cosmic rays in nearby giant molecular clouds with the Fermi Large Area Telescope. Astron. Astrophys. 566, A142 (2014)

    Google Scholar 

  • R. Yang, D.I. Jones, F. Aharonian, Fermi-LAT observations of the Sagittarius B complex. Astron. Astrophys. 580, A90 (2015)

    Google Scholar 

  • A.Y. Yang, M.A. Thompson, W.W. Tian et al., A search for hypercompact H II regions in the Galactic plane. Mon. Not. R. Astron. Soc.482, 2681–2696 (2019)

    ADS  Google Scholar 

  • J.J. Yeh, I. Lindau, Atomic subshell photoionization cross sections and asymmetry parameters. At. Data Nucl. Data Tables 32, 1 (1985)

    ADS  Google Scholar 

  • F. Yusef-Zadeh, M. Wardle, Cosmic-ray-driven outflow from the Galactic centre and the origin of magnetized radio filaments. Mon. Not. R. Astron. Soc. 490(1), L1–L5 (2019)

    ADS  Google Scholar 

  • F. Yusef-Zadeh, M. Muno, M. Wardle, D.C. Lis, The origin of diffuse X-ray and \(\gamma \)-ray emission from the Galactic center region: cosmic-ray particles. Astrophys. J. 656, 847–869 (2007)

    ADS  Google Scholar 

  • D. Zhao, G.A. Galazutdinov, H. Linnartz, J. Krełowski, Detection of OH+ in translucent interstellar clouds: new electronic transitions and probing the primary cosmic ray ionization rate. Astrophys. J. Lett. 805, L12 (2015)

    ADS  Google Scholar 

  • J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM – the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B 268, 1818–1823 (2010)

    ADS  Google Scholar 

  • E.G. Zweibel, The microphysics and macrophysics of cosmic rays. Phys. Plasmas 20(5), 055501 (2013)

    ADS  MathSciNet  Google Scholar 

  • E.G. Zweibel, The basis for cosmic ray feedback: written on the wind. Phys. Plasmas 24(5), 055402 (2017)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

M.P. acknowledges funding from the INAF PRIN-SKA 2017 program 1.05.01.88.04. J.M.D.K. gratefully acknowledges funding from the German Research Foundation (DFG) in the form of an Emmy Noether Research Group (grant number KR4801/1-1) and a DFG Sachbeihilfe Grant (grant number KR4801/2-1), from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme via the ERC Starting Grant MUSTANG (grant agreement number 714907), and from Sonderforschungsbereich SFB 881 “The Milky Way System” (subproject B2) of the DFG. S.S.R.O. acknowledges funding from NSF Career grant AST-1650486 and NASA ATP grant 80NSSC20K0507. P.G. acknowledges funding from the European Research Council under ERC-CoG grant CRAGSMAN-646955.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Padovani.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Star Formation

Edited by Andrei Bykov, Corinne Charbonnel, Patrick Hennebelle, Alexandre Marcowith, Georges Meynet, Maurizio Falanga and Rudolf van Steiger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padovani, M., Ivlev, A.V., Galli, D. et al. Impact of Low-Energy Cosmic Rays on Star Formation. Space Sci Rev 216, 29 (2020). https://doi.org/10.1007/s11214-020-00654-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-020-00654-1

Keywords

Navigation