Skip to main content
Log in

Preparation of molecularly imprinted polymers for sensing of 2,4-dichlorophenoxyacetic acid residues in environmental water and mixed juice

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, we reported a rapid and simple approach to synthesize molecularly imprinted polymers (MIPs) materials for sensing of 2,4-dichlorophenoxyacetic acid (2,4-D) residues in environmental water and mixed juice. Initially, MIPs materials were prepared via visible light-initiated reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization at ambient temperature using 2,4-D and its analogs as template molecules, in which 4-vinyl pyridine (4-VP), ethylene glycol dimethacrylate (EGDMA), (2,4,6-trimethylbenzoyl) diphenylphosphine oxide (TPO), 2-(((dodecylthio)carbonothioyl)thio)-2-methylpropanoic acid (DDMAT) were functional monomer, cross-linker, visible light initiator and RAFT agent, respectively. Then, the morphologies of the MIPs materials were characterized by FT-IR, SEM and DLS. The results showed that the MIPs materials were well-distributed spherical particles with sizes ranging from 1 to 2 μm. Furthermore, a four-channel MIPs sensor array included four polymer microspheres with a fluorescent dye displacement procedure was developed to distinguish the templates and their chemical analogs at the ppm concentration level. With the support of principal component analysis and hierarchical cluster analysis, the four-channel MIPs sensor array proves to be a simple and effective method to recognize and distinguish the templates and nontemplates in aqueous solution with 100% accuracy. Finally, the four-channel MIPs sensor array was also found to have satisfactory accuracy in monitoring 2,4-D contaminated environmental water and mixed juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhang HQ (2020) Molecularly imprinted nanoparticles for biomedical applications. Adv Mater 32:1806328

    CAS  Google Scholar 

  2. Madikizela LM, Tavengwa NT, Chimuka L (2018) Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. J Pharm Biomed 147:624–633

    CAS  Google Scholar 

  3. Rutkowska M, Plotka-Wasylka J, Morrison C, Wieczorek PP, Namiesnik J, Marc M (2018) Application of molecularly imprinted polymers in analytical chiral separations and analysis. TRAC-Trend Anal Chem 102:91–102

    CAS  Google Scholar 

  4. Huang SY, Xu JQ, Zheng JT, Zhu F, Xie LJ, Ouyang GF (2018) Synthesis and application of magnetic molecularly imprinted polymers in sample preparation. Anal Bioanal Chem 410:3991–4014

    CAS  Google Scholar 

  5. Chen CC, Luo JX, Li CL, Ma MF, Yu WB, Shen YJ, Wang ZH (2018) Molecularly imprinted polymer as an antibody substitution in pseudo-immunoassays for chemical contaminants in food and environmental samples. J Agric Food Chem 66:2561–2571

    CAS  Google Scholar 

  6. Boulanouar S, Mezzache S, Combes A, Pichon V (2018) Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples. Talanta 176:465–478

    CAS  Google Scholar 

  7. Speltini A, Scalabrini A, Maraschi F, Sturini M, Profumo A (2017) Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: a review. Anal Chim Acta 974:1–26

    CAS  Google Scholar 

  8. Ansari S, Karimi M (2017) Recent configurations and progressive uses of magnetic molecularly imprinted polymers for drug analysis. Talanta 167:470–485

    CAS  Google Scholar 

  9. Pan JM, Chen W, Ma Y, Pan GQ (2018) Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem Soc Rev 47:5574–5587

    CAS  Google Scholar 

  10. Gui RJ, Jin H, Guo HJ, Wang ZH (2018) Recent advances and future prospects in molecularly imprinted polymers-based electrochemical biosensors. Biosens Bioelectron 100:56–70

    CAS  Google Scholar 

  11. Dabrowski M, Lach P, Cieplak M, Kutner W (2018) Nanostructured molecularly imprinted polymers for protein chemosensing. Biosens Bioelectron 102:17–26

    CAS  Google Scholar 

  12. Zamora-Galvez A, Morales-Narvaez E, Mayorga-Martinez CC, Merkoci A (2017) Nanomaterials connected to antibodies and molecularly imprinted polymers as bio/receptors for bio/sensor applications. Appl Mater Today 9:387–401

    Google Scholar 

  13. Yanez-Sedeno P, Campuzano S, Pingarron JM (2017) Electrochemical sensors based on magnetic molecularly imprinted polymers: a review. Anal Chim Acta 960:1–17

    CAS  Google Scholar 

  14. Malitesta C, Di Masi S, Mazzotta E (2017) From electrochemical biosensors to biomimetic sensors based on molecularly imprinted polymers in environmental determination of heavy metals. Front Chem 5:47

    Google Scholar 

  15. Greene NT, Shimizu KD (2005) Colorimetric molecularly imprinted polymer sensor array using dye displacement. J Am Chem Soc 127:5695–5700

    CAS  Google Scholar 

  16. Greene NT, Morgan SL, Shimizu KD (2004) Molecularly imprinted polymer sensor arrays. Chem Commun. https://doi.org/10.1039/B401677G

    Article  Google Scholar 

  17. Xu D, Zhu W, Wang C, Wang C, Tian T, Li J, Lan Y, Zhang GX, Zhang DQ, Li GT (2014) Label-free detection and discrimination of poly-brominated diphenylethers using molecularly imprinted photonic cross-reactive sensor arrays. Chem Commun 50:14133–14136

    CAS  Google Scholar 

  18. Podrazka M, Baczynska E, Kundys M, Jelen PS, Nery EW (2018) Electronic tongue-a tool for all tastes? Biosensors 8:3

    Google Scholar 

  19. Lai EPC, Fafara A, VanderNoot VA, Kono M, Polsky B (1998) Surface plasmon resonance sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine, and xanthine. Can J Chem 76:265–273

    CAS  Google Scholar 

  20. Shimizu KD, Stephenson CJ (2010) Molecularly imprinted polymer sensor arrays. Curr Opin Chem Biol 14:743–750

    CAS  Google Scholar 

  21. Huynh TP, Kutner W (2015) Molecularly imprinted polymers as recognition materials for electronic tongues. Biosens Bioelectron 74:856–864

    CAS  Google Scholar 

  22. Wei XB, Zhang ZR, Zhang LF, Xu XH (2019) Synthesis of molecularly imprinted polymers/NiCo2O4 nanoneedle arrays on 3D graphene electrode for determination of sulfadimidine residue in food. J Mater Sci 54:2066–2078. https://doi.org/10.1007/s10853-018-2975-z

    Article  CAS  Google Scholar 

  23. Lieberzeit PA, Dickert FL (2009) Chemosensors in environmental monitoring: challenges in ruggedness and selectivity. Anal Bioanal Chem 393:467–472

    CAS  Google Scholar 

  24. Herrera-Chacon A, Gonzalez-Calabuig A, Campos I, del Valle M (2018) Bioelectronic tongue using MIP sensors for the resolution of volatile phenolic compounds. Sens Actuator B Chem 258:665–671

    CAS  Google Scholar 

  25. Lu WL, Dong X, Qiu LL, Yan ZQ, Meng ZH, Xue M, He X, Liu XY (2017) Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules. J Hazard Mater 326:130–137

    CAS  Google Scholar 

  26. Chunta S, Suedee R, Singsanan S, Lieberzeit PA (2019) Sensing array based on molecularly imprinted polymers for simultaneous assessment of lipoproteins. Sens Actuator B Chem 298:126828

    CAS  Google Scholar 

  27. Liu CJ, Shang L, Yoshioka HT, Chen B, Hayashi K (2018) Preparation of molecularly imprinted polymer nanobeads for selective sensing of carboxylic acid vapors. Anal Chim Acta 1010:1–10

    CAS  Google Scholar 

  28. Jasinski F, Zetterlund PB, Braun AM, Chemtob A (2018) Photopolymerization in dispersed systems. Prog Polym Sci 84:47–88

    CAS  Google Scholar 

  29. Chen M, Zhong MJ, Johnson JA (2016) Light-controlled radical polymerization: mechanisms, methods, and applications. Chem Rev 116:10167–10211

    CAS  Google Scholar 

  30. Kaastrup K, Sikes HD (2016) Using photo-initiated polymerization reactions to detect molecular recognition. Chem Soc Rev 45:532–545

    CAS  Google Scholar 

  31. Pan XC, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K (2016) Photomediated controlled radical polymerization. Prog Polym Sci 62:73–125

    CAS  Google Scholar 

  32. Ma YJ, Gao P, Ding Y, Huang LL, Wang L, Lu XH, Cai YL (2019) Visible light initiated thermoresponsive aqueous dispersion polymerization-induced self-assembly. Macromolecules 52:1033–1041

    Google Scholar 

  33. Huang LL, Ding Y, Ma YJ, Wang L, Liu QZ, Lu XH, Cai YL (2019) Colloidal stable PIC vesicles and lamellae enabled by wavelength-orthogonal disulfide exchange and polymerization-induced electrostatic self-assembly. Macromolecules 52:4703–4712

    CAS  Google Scholar 

  34. Zhu QK, Li XM, Xiao YH, Xiong Y, Wang SP, Xu CL, Zhang J, Wu XW (2017) Synthesis of molecularly imprinted polymer via visible light activated raft polymerization in aqueous media at room temperature for highly selective electrochemical assay of glucose. Macromol Chem Phys 218:201700141

    Google Scholar 

  35. Islam F, Wang J, Farooq MA, Khan MSS, Xu L, Zhu JW, Zhao M, Muñose S, Li QX, Zhou WJ (2018) Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ Int 111:332–351

    CAS  Google Scholar 

  36. Ye M, Beach J, Martin JW, Senthilselvan A (2017) Pesticide exposures and respiratory health in general populations. J Environ Sci 51:361–370

    Google Scholar 

  37. Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117:9973–10042

    CAS  Google Scholar 

  38. Pereira I, Rodrigues MF, AaR Chaves, Vaz BG (2018) Molecularly imprinted polymer (MIP) membrane assisted direct spray ionization mass spectrometry for agrochemicals screening in foodstuffs. Talanta 178:507–514

    CAS  Google Scholar 

  39. Liang YM, Yu LL, Yang R, Li X, Qu LB, Li JJ (2017) High sensitive and selective graphene oxide/molecularly imprinted polymer electrochemical sensor for 2,4-dichlorophenol in water. Sens Actuator B Chem 240:1330–1335

    CAS  Google Scholar 

  40. Xu Z, Deng P, Li J, Tang S, Cui Y (2019) Modification of mesoporous silica with molecular imprinting technology: a facile strategy for achieving rapid and specific adsorption. Mater Sci Eng, C 94:684–693

    CAS  Google Scholar 

  41. Yang X, Chen J, Liu H, Li XF, Zhong SA (2019) Molecularly imprinted polymers based on zeolite imidazolate framework-8 for selective removal of 2,4-dichlorophenoxyacetic acid. Colloid Surf A 570:244–250

    CAS  Google Scholar 

  42. Hua MZ, Feng SL, Wang S, Lu XN (2018) Rapid detection and quantification of 2,4-dichlorophenoxyacetic acid in milk using molecularly imprinted polymers-surface-enhanced Raman spectroscopy. Food Chem 258:254–259

    CAS  Google Scholar 

  43. Wang J, Xu Q, Xia WW, Shu Y, Jin DQ, Zang Y, Hu XY (2018) High sensitive visible light photoelectrochemical sensor based on in situ prepared flexible Sn3O4 nanosheets and molecularly imprinted polymers. Sens Actuators B Chem 271:215–224

    CAS  Google Scholar 

  44. Wang H, Xu Q, Wang J, Du W, Liu F, Hu X (2018) Dendrimer-like amino-functionalized hierarchical porous silica nanoparticle: a host material for 2,4-dichlorophenoxyacetic acid imprinting and sensing. Biosens Bioelectron 100:105–114

    CAS  Google Scholar 

  45. Wagner S, Jrm Bell, Biyikal M, Gawlitza K, Rurack K (2018) Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar small-molecule detection directly in aqueous samples. Biosens Bioelectron 99:244–250

    CAS  Google Scholar 

  46. Ruiz-Córdova GA, Khan S, Gonçalves LM, Pividori MI, Picasso G, Sotomayor MDPT (2018) Electrochemical sensing using magnetic molecularly imprinted polymer particles previously captured by a magneto-sensor. Talanta 181:19–23

    Google Scholar 

  47. Liu Y, Hu X, Meng MJ, Liu ZC, Ni L, Meng XG, Qiu J (2016) RAFT-mediated microemulsion polymerization to synthesize a novel high-performance graphene oxide-based cadmium imprinted polymer. Chem Eng J 302:609–618

    CAS  Google Scholar 

  48. Chowdhury S, Balasubramanian R (2014) Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv Colloid Interface 204:35–56

    CAS  Google Scholar 

  49. Wang L, Frei MS, Salim A, Johnsson K (2019) Small-molecule fluorescent probes for live-cell super-resolution microscopy. J Am Chem Soc 141:2770–2781

    CAS  Google Scholar 

  50. Mako TL, Racicot JM, Levine M (2019) Supramolecular luminescent sensors. Chem Rev 119:322–477

    CAS  Google Scholar 

  51. Ma YF, Li YW, Ma K, Wang Z (2018) Optical colorimetric sensor arrays for chemical and biological analysis. Sci China Chem 61:643–655

    CAS  Google Scholar 

  52. Bigdeli A, Ghasemi F, Golmohammadi H, Samira Abbasi-Moayed S, Nejad MAF, Fahimi-Kashani N, Jafarinejad S, Shahrajabian M, Hormozi-Nezhad MR (2017) Nanoparticle-based optical sensor arrays. Nanoscale 9:16546–16563

    CAS  Google Scholar 

  53. Peveler WJ, Yazdani M, Rotello VM (2016) Selectivity and specificity: pros and cons in sensing. ACS Sens 1:1282–1285

    CAS  Google Scholar 

  54. Johnson KJ, Rose-Pehrsson SL (2015) Sensor array design for complex sensing tasks. Annu Rev Anal Chem 8:287–310

    Google Scholar 

  55. Askim JR, Mahmoudi M, Suslick KS (2013) Optical sensor arrays for chemical sensing: the optoelectronic nose. Chem Soc Rev 42:8649–8682

    CAS  Google Scholar 

  56. Liu Y, Ding LP, Cao Y, Fang Y (2012) Fluorescent sensor arrays. Prog Chem 24:1915–1927

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department (19K086), the Natural Science Foundation of Hunan Province (2006JJ6148) and the Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewen Wu or Yan Xiong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Jiao, T., Xu, C. et al. Preparation of molecularly imprinted polymers for sensing of 2,4-dichlorophenoxyacetic acid residues in environmental water and mixed juice. J Mater Sci 55, 6848–6860 (2020). https://doi.org/10.1007/s10853-020-04516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04516-7

Navigation