Skip to main content
Log in

Visible-light-responsive folate-conjugated titania and alumina nanotubes for photodynamic therapy applications

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The use of nanomaterials in photodynamic therapy (PDT) has emerged as a promising alternative to enhance the efficacy and overcome the limitations of conventional photosensitizers. A major challenge in this regard is the development of novel cheap, synthetically convenient and biocompatible photoresponsive nanomaterials for visible-light-driven PDT applications. In this work, folate-conjugated titania and alumina nanotubes were successfully prepared and evaluated as novel photoactive nanomaterials with visible light responsiveness. Nanotubes were prepared by hydrothermal synthesis and surface-conjugated with folic acid using a silane coupling agent. Materials were characterized by ATR, TEM, XRD and TGA methods, and their photophysical properties were assessed from diffuse reflectance spectroscopy, production of reactive oxygen species (1O2 and HO) and confocal microscopy fluorescence emission experiments. Our results revealed that folate-conjugated titania and alumina nanotubes are photodynamically active upon irradiation with a blue-LED visible light source, whereas pristine nanotubes or free folic acid exhibits negligible photoresponse under the same experimental conditions. In vitro phototoxicity experiments on HeLa cancer cells confirmed the photodynamic efficacy of folate-conjugated materials as inhibitors of cell proliferation after 1 h of blue-LED light irradiation (450 nm, 100 W m−2) in 4 mg/mL solid suspensions. Folate-alumina nanotubes exhibited the highest activity within the nanomaterials under study, which—to the best of our knowledge—constitutes a major advance toward the use of alumina-based nanomaterials in visible-light-driven PDT applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Youssef Z, Jouan-Hureaux V, Colombeau L, Arnoux P, Moussaron A, Baros F, Toufaily J, Hamieh T, Roques-Carmes T, Frochot C (2018) Titania and silica nanoparticles coupled to Chlorin e6 for anti-cancer photodynamic therapy. Photodiagn Photodyn Ther 22:115–126

    CAS  Google Scholar 

  2. Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J (2018) Photodynamic therapy—mechanisms, photosensitizers and combinations. Biomed Pharmacother 106:1098–1107

    CAS  Google Scholar 

  3. Li X, Lee S, Yoon J (2018) Supramolecular photosensitizers rejuvenate photodynamic therapy. Chem Soc Rev 47:1174–1188

    CAS  Google Scholar 

  4. Abrahamse H, Hamblin Michael R (2016) New photosensitizers for photodynamic therapy. Biochem J 473:347–364

    CAS  Google Scholar 

  5. Mallidi S, Anbil S, Bulin A-L, Obaid G, Ichikawa M, Hasan T (2016) Beyond the barriers of light penetration: strategies, perspectives and possibilities for photodynamic therapy. Theranostics 6:2458–2487

    CAS  Google Scholar 

  6. Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042

    CAS  Google Scholar 

  7. Mfouo Tynga I, Abrahamse H (2018) Nano-mediated photodynamic therapy for cancer: enhancement of cancer specificity and therapeutic effects. Nanomaterials 8:923

    Google Scholar 

  8. Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliver Rev 60:1627–1637

    CAS  Google Scholar 

  9. Rehman FU, Zhao C, Jiang H, Wang X (2016) Biomedical applications of nano-titania in theranostics and photodynamic therapy. Biomater Sci 4:40–54

    CAS  Google Scholar 

  10. Rajh T, Dimitrijevic NM, Bissonnette M, Koritarov T, Konda V (2014) Titanium dioxide in the service of the biomedical revolution. Chem Rev 114:10177–10216

    CAS  Google Scholar 

  11. Jukapli NM, Bagheri S (2016) Recent developments on titania nanoparticle as photocatalytic cancer cells treatment. J Photochem Photobiol B 163:421–430

    CAS  Google Scholar 

  12. Sułek A, Pucelik B, Kuncewicz J, Dubin G, Dąbrowski JM (2019) Sensitization of TiO2 by halogenated porphyrin derivatives for visible light biomedical and environmental photocatalysis. Catal Today 335:538–549

    Google Scholar 

  13. Rahimi R, Zargari S, Yousefi A, Yaghoubi Berijani M, Ghaffarinejad A, Morsali A (2015) Visible light photocatalytic disinfection of E. coli with TiO2–graphene nanocomposite sensitized with tetrakis(4-carboxyphenyl)porphyrin. Appl Surf Sci 355:1098–1106

    CAS  Google Scholar 

  14. Subramaniam MN, Goh PS, Lau WJ, Ismail AF, Gürsoy M, Karaman M (2019) Synthesis of titania nanotubes/polyaniline via rotating bed-plasma enhanced chemical vapor deposition for enhanced visible light photodegradation. Appl Surf Sci 484:740–750

    CAS  Google Scholar 

  15. Li Y, Wang Y, Kong J, Wang J (2015) Synthesis and photocatalytic activity of TiO2 nanotubes co-doped by erbium ions. Appl Surf Sci 328:115–119

    CAS  Google Scholar 

  16. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21

    CAS  Google Scholar 

  17. Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    CAS  Google Scholar 

  18. Rahmati M, Mozafari M (2019) Biocompatibility of alumina-based biomaterials–a review. J Cell Physiol 234:3321–3335

    CAS  Google Scholar 

  19. Filatova EO, Konashuk AS (2015) Interpretation of the changing the band gap of Al2O3 depending on its crystalline form: connection with different local symmetries. J Phys Chem C 119:20755–20761

    CAS  Google Scholar 

  20. Pathania D, Katwal R, Kaur H (2016) Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles. Int J Miner Metall Mater 23:358–371

    CAS  Google Scholar 

  21. Tzompantzi F, Piña Y, Mantilla A, Aguilar-Martínez O, Galindo-Hernández F, Bokhimi X, Barrera A (2014) Hydroxylated sol–gel Al2O3 as photocatalyst for the degradation of phenolic compounds in presence of UV light. Catal Today 220–222:49–55

    Google Scholar 

  22. Cañas J, Piñero JC, Lloret F, Gutierrez M, Pham T, Pernot J, Araujo D (2018) Determination of alumina bandgap and dielectric functions of diamond MOS by STEM-VEELS. Appl Surf Sci 461:93–97

    Google Scholar 

  23. Campos CH, Díaz CF, Guzmán JL, Alderete JB, Torres CC, Jiménez VA (2016) PAMAM-conjugated alumina nanotubes as novel noncytotoxic nanocarriers with enhanced drug loading and releasing performances. Macromol Chem Phys 217:1712–1722

    CAS  Google Scholar 

  24. Torres CC, Campos CH, Diáz C, Jiménez VA, Vidal F, Guzmán L, Alderete JB (2016) PAMAM-grafted TiO2 nanotubes as novel versatile materials for drug delivery applications. Mater Sci Eng C 65:164–171

    CAS  Google Scholar 

  25. Chávez-García D, Juarez-Moreno K, Campos CH, Tejeda EM, Alderete JB, Hirata GA (2018) Cytotoxicity, genotoxicity and uptake detection of folic acid-functionalized green upconversion nanoparticles Y2O3/Er3+, Yb3+ as biolabels for cancer cells. J Mater Sci 53:6665–6680. https://doi.org/10.1007/s10853-017-1946-0

    Article  CAS  Google Scholar 

  26. Torres CC, Jiménez VA, Campos CH, Alderete JB, Dinamarca R, Bustamente TM, Pawelec B (2018) Gold catalysts supported on TiO2-nanotubes for the selective hydrogenation of p-substituted nitrobenzenes. Mol Catal 447:21–27

    CAS  Google Scholar 

  27. Stallivieri A, Colombeau L, Jetpisbayeva G, Moussaron A, Myrzakhmetov B, Arnoux P, Acherar S, Vanderesse R, Frochot C (2017) Folic acid conjugates with photosensitizers for cancer targeting in photodynamic therapy: synthesis and photophysical properties. Biorg Med Chem 25:1–10

    CAS  Google Scholar 

  28. Aurelie S, Francis B, Gulim J, Bauyrzhan M, Celine F (2015) The interest of folic acid in targeted photodynamic therapy. Curr Med Chem 22:3185–3207

    Google Scholar 

  29. Khoshgard K, Arkan E, Hosseinzadeh L, Hemati Azandaryani A (2018) Evaluating the photodynamic therapy efficacy using 5-aminolevulinic acid and folic acid-conjugated bismuth oxide nanoparticles on human nasopharyngeal carcinoma cell line AU - Akbarzadeh, Fatemeh, Artif. Cells, Nanomed., Biotechnol., 1-10

  30. Wang J, Liu Q, Zhang Y, Shi H, Liu H, Guo W, Ma Y, Huang W, Hong Z (2017) Folic acid-conjugated pyropheophorbide a as the photosensitizer tested for in vivo targeted photodynamic therapy. J Pharm Sci 106:1482–1489

    CAS  Google Scholar 

  31. Narmani A, Rezvani M, Farhood B, Darkhor P, Mohammadnejad J, Amini B, Refahi S, Abdi Goushbolagh N (2019) Folic acid functionalized nanoparticles as pharmaceutical carriers in drug delivery systems. Drug Dev Res 80:404–424

    CAS  Google Scholar 

  32. Matlou GG, Oluwole DO, Prinsloo E, Nyokong T (2018) Photodynamic therapy activity of zinc phthalocyanine linked to folic acid and magnetic nanoparticles. J Photochem Photobiol, B 186:216–224

    CAS  Google Scholar 

  33. Turkowski V, Babu S, Le D, Kumar A, Haldar MK, Wagh AV, Hu Z, Karakoti AS, Gesquiere AJ, Law B, Mallik S, Rahman TS, Leuenberger MN, Seal S (2012) Linker-induced anomalous emission of organic-molecule conjugated metal-oxide nanoparticles. ACS Nano 6:4854–4863

    CAS  Google Scholar 

  34. Rota C, Chignell CF, Mason RP (1999) Evidence for free radical formation during the oxidation of 2′-7′-dichlorofluorescin to the fluorescent dye 2′-7′-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radical Biol Med 27:873–881

    CAS  Google Scholar 

  35. Setsukinai K-i, Urano Y, Kakinuma K, Majima HJ, Nagano T (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. J Biol Chem 278:3170–3175

    CAS  Google Scholar 

  36. Boss SD, Betzel T, Müller C, Fischer CR, Haller S, Reber J, Groehn V, Schibli R, Ametamey SM (2016) Comparative studies of three pairs of α- and γ-conjugated folic acid derivatives labeled with fluorine-18. Bioconjugate Chem 27:74–86

    CAS  Google Scholar 

  37. Lu CL, Lv JG, Xu L, Guo XF, Hou WH, Hu Y, Huang H (2009) Crystalline nanotubes of γ-AlOOH and γ-Al2O3: hydrothermal synthesis, formation mechanism and catalytic performance. Nanotechnology 20:215604

    CAS  Google Scholar 

  38. Tang B, Ge J, Zhuo L, Wang G, Niu J, Shi Z, Dong Y (2005) A facile and controllable synthesis of γ-Al2O3 nanostructures without a surfactant. Eur J Inorg Chem 2005:4366–4369

    Google Scholar 

  39. Vaschetto EG, Pecchi GA, Casuscelli SG, Eimer GA (2014) Nature of the active sites in Al-MCM-41 nano-structured catalysts for the selective rearrangement of cyclohexanone oxime toward ɛ-caprolactam. Micropor Mesopor Mat 200:110–116

    CAS  Google Scholar 

  40. Kuang D, Fang Y, Liu H, Frommen C, Fenske D (2003) Fabrication of boehmite AlOOH and [gamma]-Al2O3 nanotubes via a soft solution route. J Mater Chem 13:660–662

    CAS  Google Scholar 

  41. López R, Gómez R (2012) Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. J Sol–Gel Sci Technol 61:1–7

    Google Scholar 

  42. Yazdanmehr M, Asadabadi SJ, Nourmohammadi A, Ghasemzadeh M, Rezvanian M (2012) Electronic structure and bandgap of γ-Al2O3 compound using mBJ exchange potential. Nanoscale Res Lett 7:488–488

    Google Scholar 

  43. Ismail RA, Zaidan SA, Kadhim RM (2017) Preparation and characterization of aluminum oxide nanoparticles by laser ablation in liquid as passivating and anti-reflection coating for silicon photodiodes. Appl Nanosci 7:477–487

    CAS  Google Scholar 

  44. Papi H, Jalali-Asadabadi S, Nourmohammadi A, Ahmad I, Nematollahi J, Yazdanmehr M (2015) Optical properties of ideal γ-Al2O3 and with oxygen point defects: an ab initio study. RSC Adv 5:55088–55099

    CAS  Google Scholar 

  45. Tamboli SH, Puri V, Puri RK, Patil RB, Luo MF (2011) Comparative study of physical properties of vapor chopped and nonchopped Al2O3 thin films. Mater Res Bull 46:815–819

    CAS  Google Scholar 

  46. Mahmood H, Habib A, Mujahid M, Tanveer M, Javed S, Jamil A (2014) Band gap reduction of titania thin films using graphene nanosheets. Mater Sci Semicond Process 24:193–199

    CAS  Google Scholar 

  47. Husseini GA, Kanan S, Al-Sayah M (2016) Investigating the fluorescence quenching of doxorubicin in folic acid solutions and its relation to ligand-targeted nanocarriers. J Nanosci Nanotechnol 16:1410–1414

    CAS  Google Scholar 

  48. Chakravarty S, Dutta P, Kalita S, Sen Sarma N (2016) PVA-based nanobiosensor for ultrasensitive detection of folic acid by fluorescence quenching. Sens Actuators, B 232:243–250

    CAS  Google Scholar 

  49. Manzoori JL, Jouyban A, Amjadi M, Soleymani J (2011) Spectrofluorimetric determination of folic acid in tablets and urine samples using 1,10-phenanthroline-terbium probe. Luminescence 26:106–111

    CAS  Google Scholar 

  50. Baptista MS, Cadet J, Di Mascio P, Ghogare AA, Greer A, Hamblin MR, Lorente C, Nunez SC, Ribeiro MS, Thomas AH, Vignoni M, Yoshimura TM (2017) Type I and Type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem Photobiol 93:912–919

    CAS  Google Scholar 

  51. Alaimo A, Liñares GG, Bujjamer JM, Gorojod RM, Alcon SP, Martínez JH, Baldessari A, Grecco HE, Kotler ML (2019) Toxicity of blue led light and A2E is associated to mitochondrial dynamics impairment in ARPE-19 cells: implications for age-related macular degeneration. Arch Toxicol 93:1401–1415

    CAS  Google Scholar 

  52. Arnault E, Barrau C, Nanteau C, Gondouin P, Bigot K, Viénot F, Gutman E, Fontaine V, Villette T, Cohen-Tannoudji D, Sahel J-A, Picaud S (2013) Phototoxic action spectrum on a retinal pigment epithelium model of age-related macular degeneration exposed to sunlight normalized conditions. PLoS ONE 8:e71398

    CAS  Google Scholar 

  53. Pazos MdC, Nader HB (2007) Effect of photodynamic therapy on the extracellular matrix and associated components. Braz J Med Biol Res 40:1025–1035

    CAS  Google Scholar 

  54. Li W, Tan G, Zhang H, Wang Z, Jin Y (2017) Folate chitosan conjugated doxorubicin and pyropheophorbide acid nanoparticles (FCDP–NPs) for enhance photodynamic therapy. RSC Advances 7:44426–44437

    CAS  Google Scholar 

  55. Alivov Y, Singh V, Ding Y, Cerkovnik LJ, Nagpal P (2014) Doping of wide-bandgap titanium-dioxide nanotubes: optical, electronic and magnetic properties. Nanoscale 6:10839–10849

    CAS  Google Scholar 

  56. Padiyan DP, Raja DH (2012) Synthesis of various generations titania nanotube arrays by electrochemical anodization for H2 production. Energy Procedia 22:88–100

    Google Scholar 

  57. Mohapatra SK, Misra M, Mahajan VK, Raja KS (2007) A novel method for the synthesis of titania nanotubes using sonoelectrochemical method and its application for photoelectrochemical splitting of water. J Catal 246:362–369

    CAS  Google Scholar 

  58. Rahman Khan MM, Akter M, Amin MK, Younus M, Chakraborty N (2018) synthesis, luminescence and thermal properties of PVA–ZnO–Al2O3 composite films: towards fabrication of sunlight-induced catalyst for organic dye removal. J Polym Environ 26:3371–3381

    CAS  Google Scholar 

  59. Misba L, Zaidi S, Khan AU (2018) Efficacy of photodynamic therapy against Streptococcus mutans biofilm: role of singlet oxygen. J Photochem Photobiol, B 183:16–21

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge FONDECYT under Grants 1170426, 1191465 and 11170095 for financial support. Dr. Cecilia Torres thanks to CONICYT, PAI/Concurso Nacional Inserción de Capital Humano Avanzado en la Academia Convocatoria año 2017 PAI 79170027.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel B. Alderete.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest or involvement in any organization with any financial or non-financial interest in the subjects or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez, V.A., Moreno, N., Guzmán, L. et al. Visible-light-responsive folate-conjugated titania and alumina nanotubes for photodynamic therapy applications. J Mater Sci 55, 6976–6991 (2020). https://doi.org/10.1007/s10853-020-04483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04483-z

Navigation