Skip to main content
Log in

ZnO/CeO2 nanocomposite with low photocatalytic activity as efficient UV filters

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we successfully synthesized ZnO/CeO2 composite nanoparticles for efficient ultraviolet (UV) filtering applications using a simple precipitation route. Various ratios of Ce/Ti, 2.5 at.%, 5 at.%, and 10 at.% were used to precipitate ceria onto commercial ZnO nanopowder at pH 9. The calculated mean crystallite sizes of the resultant nanocomposites were ~ 90 nm, ~ 79 nm, and ~ 41 nm for the 2.5 at.%, 5 at.% and 10 at.% ceria amounts, respectively. A stronger and more selective absorbance within the UV range was observed due to precipitation of a small amount of ceria to decorate the commercial ZnO surface. The photocatalyst results show that the addition of ceria, particularly with the precipitation amount increased up to 10 at.%, can effectively reduce crystal violet degradation by about 97% in a period of time from 0 to 30 min when exposed to ultraviolet light over 30 min or by around 99% under solar simulation for 30 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Furusawa T et al (2008) The microwave effect on the properties of silica-coated TiO2 fine particles prepared using sol–gel method. Mater Res Bull 43(4):946–957

    CAS  Google Scholar 

  2. Kullavanijaya P, Lim HW (2005) Photoprotection. J Am Acad Dermatol 52(6):937–958

    Google Scholar 

  3. Liu X, Yin S, Sato T (2009) Synthesis of broad-spectrum UV-shielding plate-like titanate/calcia-doped ceria composite in different pH solution. Mater Chem Phys 116(2–3):421–425

    CAS  Google Scholar 

  4. Antoniou C et al (2008) Sunscreens–what’s important to know. J Eur Acad Dermatol Venereol 22(9):1110–1119

    CAS  Google Scholar 

  5. Im YM et al (2015) Effect of ZnO nanoparticles morphology on UV blocking of poly (vinyl alcohol)/ZnO composite nanofibers. Mater Lett 147:20–24

    CAS  Google Scholar 

  6. Pinnell SR et al (2000) Microfine zinc oxide is a superior sunscreen ingredient to microfine titanium dioxide. Dermatol Surg 26(4):309–314

    CAS  Google Scholar 

  7. Schaefer H, Moyal D, Fourtanier A (1998) Recent advances in sun protection. Protection of the skin against ultraviolet radiations. John Libbey Eurotext, Paris, pp 119–129

    Google Scholar 

  8. Schauder S, Ippen H (1997) Contact and photocontact sensitivity to sunscreens: review of a 15-year experience and of the literature. Contact Dermat 37(5):221–232

    CAS  Google Scholar 

  9. Roscher NM et al (1994) Photodecomposition of several compounds commonly used as sunscreen agents. J Photochem Photobiol, A 80(1–3):417–421

    CAS  Google Scholar 

  10. Serpone N et al (2002) An in vitro systematic spectroscopic examination of the photostabilities of a random set of commercial sunscreen lotions and their chemical UVB/UVA active agents. Photochem Photobiol Sci 1(12):970–981

    CAS  Google Scholar 

  11. Dodd A et al (2010) Optical and photocatalytic properties of nanoparticulate (TiO2) x (ZnO) 1–x powders. J Alloy Compd 489(2):L17–L21

    CAS  Google Scholar 

  12. Cai R et al (1991) Photokilling of malignant cells with ultrafine TiO2 powder. Bull Chem Soc Japan 64(4):1268–1273

    CAS  Google Scholar 

  13. Serpone N, Salinaro A, Emeline A (2001) Deleterious effects of sunscreen titanium dioxide nanoparticles on DNA: efforts to limit DNA damage by particle surface modification. In: Nanoparticles and nanostructured surfaces: novel reporters with biological applications. 2001. International society for optics and photonics

  14. Yang H, Zhu S, Pan N (2004) Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J Appl Polym Sci 92(5):3201–3210

    CAS  Google Scholar 

  15. Chen H-C et al (2006) Effects of temperature on columnar microstructure and recrystallization of TiO2 film produced by ion-assisted deposition. Appl Opt 45(9):1979–1984

    CAS  Google Scholar 

  16. Senatova S et al (2015) Optical properties of stabilized ZnO nanoparticles, perspective for UV-protection in sunscreens. Curr Nanosci 11(3):354–359

    CAS  Google Scholar 

  17. Zholobak N et al (2011) UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J Photochem Photobiol, B 102(1):32–38

    CAS  Google Scholar 

  18. Boutard T et al (2013) Comparison of photoprotection efficiency and antiproliferative activity of ZnO commercial sunscreens and CeO2. Mater Lett 108:13–16

    CAS  Google Scholar 

  19. Yabe S, Sato T (2003) Cerium oxide for sunscreen cosmetics. J Solid State Chem 171(1–2):7–11

    CAS  Google Scholar 

  20. Truffault L et al (2010) Application of nanostructured Ca doped CeO2 for ultraviolet filtration. Mater Res Bull 45(5):527–535

    CAS  Google Scholar 

  21. Truffault L et al (2011) Synthesis and characterization of Fe doped CeO. Nanosci Nanotechnol 11:1–10

    Google Scholar 

  22. Truffault L et al (2011) Synthesis of nano-hematite for possible use in sunscreens. J Nanosci Nanotechnol 11(3):2413–2420

    CAS  Google Scholar 

  23. Cardillo D, Konstantinov K, Devers T (2013) The effects of cerium doping on the size, morphology, and optical properties of α-hematite nanoparticles for ultraviolet filtration. Mater Res Bull 48(11):4521–4525

    CAS  Google Scholar 

  24. Heckert EG et al (2008) The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials 29(18):2705–2709

    CAS  Google Scholar 

  25. Celardo I et al (2011) Ce3 + ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano 5(6):4537–4549

    CAS  Google Scholar 

  26. He G, Fan H, Wang Z (2014) Enhanced optical properties of heterostructured ZnO/CeO2 nanocomposite fabricated by one-pot hydrothermal method: fluorescence and ultraviolet absorption and visible light transparency. Opt Mater 38:145–153

    CAS  Google Scholar 

  27. Li R et al (2002) UV-shielding properties of zinc oxide-doped ceria fine powders derived via soft solution chemical routes. Mater Chem Phys 75(1–3):39–44

    CAS  Google Scholar 

  28. Yabe S et al (2001) Synthesis and UV-shielding properties of metal oxide doped ceria via soft solution chemical processes. Int J Inorg Mater 3(7):1003–1008

    CAS  Google Scholar 

  29. Bi L et al (2008) Structural, magnetic, and magneto-optical properties of Co-doped Ce O2−δ films. J Appl Phys 103(7):07D138

    Google Scholar 

  30. He Y, Yang B, Cheng G (2003) Controlled synthesis of CeO2 nanoparticles from the coupling route of homogenous precipitation with microemulsion. Mater Lett 57(13–14):1880–1884

    CAS  Google Scholar 

  31. Yamashita M et al (2002) Synthesis and microstructure of calcia doped ceria as UV filters. J Mater Sci 37(4):683–687. https://doi.org/10.1023/A:1013819310041

    Article  CAS  Google Scholar 

  32. Ge C, Xie C, Cai S (2007) Preparation and gas-sensing properties of Ce-doped ZnO thin-film sensors by dip-coating. Mater Sci Eng, B 137(1–3):53–58

    CAS  Google Scholar 

  33. Li C et al (2011) Electrospinning of CeO2–ZnO composite nanofibers and their photocatalytic property. Mater Lett 65(9):1327–1330

    CAS  Google Scholar 

  34. Yayapao O et al (2013) Sonochemical synthesis, photocatalysis and photonic properties of 3% Ce-doped ZnO nanoneedles. Ceram Int 39:S563–S568

    CAS  Google Scholar 

  35. Yousefi M et al (2011) Enhanced photoelectrochemical activity of Ce doped ZnO nanocomposite thin films under visible light. J Electroanal Chem 661(1):106–112

    CAS  Google Scholar 

  36. Fangli D et al (2010) Preparation, characterization and infrared emissivity study of Ce-doped ZnO films. J Rare Earths 28(3):391–395

    Google Scholar 

  37. Anbia M, Fard SEM (2012) Humidity sensing properties of Ce-doped nanoporous ZnO thin film prepared by sol–gel method. J Rare Earths 30(1):38–42

    CAS  Google Scholar 

  38. Morinaga Y et al (1997) Effect of Ce doping on the growth of ZnO thin films. J Cryst Growth 174(1–4):691–695

    CAS  Google Scholar 

  39. Mahmoud WE (2010) Synthesis and optical properties of Ce-doped ZnO hexagonal nanoplatelets. J Cryst Growth 312(21):3075–3079

    CAS  Google Scholar 

  40. de Lima JF et al (2009) ZnO: CeO2-based nanopowders with low catalytic activity as UV absorbers. Appl Surf Sci 255(22):9006–9009

    Google Scholar 

  41. Panda N et al (2013) Thermoluminescence and decay studies on cerium doped ZnO nanopowders. Mater Lett 95:205–208

    CAS  Google Scholar 

  42. Yang J et al (2008) Low-temperature growth and optical properties of Ce-doped ZnO nanorods. Appl Surf Sci 255(5):2646–2650

    CAS  Google Scholar 

  43. Dar G et al (2012) Ce-doped ZnO nanorods for the detection of hazardous chemical. Sens Actuators B Chem 173:72–78

    CAS  Google Scholar 

  44. Tan WK et al (2013) Photoluminescence properties of rod-like Ce-doped ZnO nanostructured films formed by hot-water treatment of sol–gel derived coating. Opt Mater 35(11):1902–1907

    CAS  Google Scholar 

  45. Rezaei M, Habibi-Yangjeh A (2013) Simple and large scale refluxing method for preparation of Ce-doped ZnO nanostructures as highly efficient photocatalyst. Appl Surf Sci 265:591–596

    CAS  Google Scholar 

  46. Xia C, Hu C, Zhou P (2013) Low-temperature growth and optical properties of Ce-doped ZnO nanorods. J Exp Nanosci 8(1):69–76

    CAS  Google Scholar 

  47. Sofiani Z et al (2006) Optical properties of ZnO and ZnO: Ce layers grown by spray pyrolysis. Opt Commun 267(2):433–439

    CAS  Google Scholar 

  48. George A et al (2011) Detailed of X-ray diffraction and photoluminescence studies of Ce doped ZnO nanocrystals. J Alloy Compd 509(20):5942–5946

    CAS  Google Scholar 

  49. Karunakaran C, Gomathisankar P, Manikandan G (2010) Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Mater Chem Phys 123(2–3):585–594

    CAS  Google Scholar 

  50. Bogusz K et al (2018) TiO2/(BiO)2 CO3 nanocomposites for ultraviolet filtration with reduced photocatalytic activity. J Mater Chem C 6(21):5639–5650

    CAS  Google Scholar 

  51. Cardillo D et al (2016) Multifunctional Fe2 O3/CeO2 nanocomposites for free radical scavenging ultraviolet protection. RSC Adv 6(70):65397–65402

    CAS  Google Scholar 

  52. Rajendran S et al (2016) Ce 3 + -ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite. Sci Rep 6:31641

    CAS  Google Scholar 

  53. Saravanan R et al (2018) Line defect Ce3 + induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity. J Photochem Photobiol, A 353:499–506

    CAS  Google Scholar 

  54. Saravanan R, et al. (2012) Photocatalytic degradation of organic dyes using ZnO/CeO2 nanocomposite material under visible light. In Advanced materials research. Trans Tech Publications Ltd

  55. Ying JY, Tschöpe A (1996) Synthesis and characteristics of non-stoichiometric nanocrystalline cerium oxide-based catalysts. Chem Eng J Biochem Eng J 64(2):225–237

    CAS  Google Scholar 

  56. Nelson BC et al (2016) Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants 5(2):15

    Google Scholar 

  57. Xue Y et al (2011) Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J Phys Chem C 115(11):4433–4438

    CAS  Google Scholar 

  58. Lamba R et al (2015) CeO2ZnO hexagonal nanodisks: efficient material for the degradation of direct blue 15 dye and its simulated dye bath effluent under solar light. J Alloy Compd 620:67–73

    CAS  Google Scholar 

  59. Ye Z et al (2016) Well-dispersed nebula-like ZnO/CeO2@ HNTs heterostructure for efficient photocatalytic degradation of tetracycline. Chem Eng J 304:917–933

    CAS  Google Scholar 

  60. Zamiri R et al (2015) Dielectrical properties of CeO2 nanoparticles at different temperatures. PLoS ONE 10(4):e0131851

    Google Scholar 

  61. Zuas O, Abimanyu H, Wibowo W (2014) Synthesis and characterization of nanostructured CeO2 with dyes adsorption property. Process Appl Ceram 8(1):39–46

    CAS  Google Scholar 

  62. Kumar E, Selvarajan P, Muthuraj D (2013) Synthesis and characterization of CeO2 nanocrystals by solvothermal route. Mater Res 16(2):269–276

    CAS  Google Scholar 

  63. Nagaraju G et al (2017) Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Mater Res Bull 94:54–63

    CAS  Google Scholar 

  64. Selvi N, Sankar S, Dinakaran K (2014) Size controlled synthesis of pure CeO2 and ZnO COATED CeO2 core-shell nanoparicles for opto-electronic applications. In: 2014 International conference on science engineering and management research (ICSEMR). IEEE

  65. Selvi N et al (2014) Effect of ZnO, SiO2 dual shells on CeO2 hybrid core–shell nanostructures and their structural, optical and magnetic properties. RSC Adv 4(99):55745–55751

    CAS  Google Scholar 

  66. Suhail FSA, Mashkour MS, Saeb D (2015) The study on photo degradation of crystal violet by polarographic technique. Int J Basic Appl Sci 15:12–21

    Google Scholar 

  67. Lee G, Kawazoe T, Ohtsu M (2002) Difference in optical bandgap between zinc-blende and wurtzite ZnO structure formed on sapphire (0001) substrate. Solid State Commun 124(5–6):163–165

    CAS  Google Scholar 

  68. Mueen R et al (2020) Na-doped ZnO UV filters with reduced photocatalytic activity for sunscreen applications. J Mater Sci 55(7):2772–2786. https://doi.org/10.1007/s10853-019-04122-2

    Article  CAS  Google Scholar 

  69. Tsuzuki T et al (2012) Reduction of the photocatalytic activity of ZnO nanoparticles for UV protection applications. Int J Nanotechnol 9(10–12):1017–1029

    CAS  Google Scholar 

  70. He R, Hocking RK, Tsuzuki T (2012) Co-doped ZnO nanopowders: location of cobalt and reduction in photocatalytic activity. Mater Chem Phys 132(2–3):1035–1040

    CAS  Google Scholar 

  71. Kaneva NV, Dimitrov DT, Dushkin CD (2011) Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light. Appl Surf Sci 257(18):8113–8120

    CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the University of Wollongong Global Challenges project “NEXT GENERATION SUNSCREENS: Designed and tested for Australian conditions, with global implications for sun safety.” Furthermore, the authors acknowledge the use of the facilities within the Electron Microscopy Centre at the University of Wollongong. The authors would also like to acknowledge the support provided by the University of Diyala and the Iraqi Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Konstantinov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mueen, R., Morlando, A., Qutaish, H. et al. ZnO/CeO2 nanocomposite with low photocatalytic activity as efficient UV filters. J Mater Sci 55, 6834–6847 (2020). https://doi.org/10.1007/s10853-020-04493-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04493-x

Navigation