Skip to main content
Log in

Determination of the X-ray attenuation coefficient of bismuth oxychloride nanoplates in polydimethylsiloxane

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this research is to present a method to evaluate the X-ray attenuation coefficient of (nano)particles by uniformly dispersing them in a host polymer, polydimethylsiloxane. The method is described and applied to the case of a material of interest for medical application in X-ray shielding and imaging, namely bismuth oxychloride nanoplates (BiOCl NP). A diagnostic X-ray machine was used to perform X-ray attenuation tests. A certified copper plate was used for calibration purposes and to find the X-ray photon energy. Blank polymer and composites were investigated, and the attenuation coefficient μ and the mass attenuation coefficient μ/ρ of BiOCl NPs were found to be 45 cm−1 and 6 cm2 g−1, respectively. Based on these values, a discussion is presented in which the perspective applications of BiOCl in medicine are discussed with specific focus on (i) X-ray shielding and (ii) X-ray imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Studwell AJ, Kotton DN (2011) A shift from cell cultures to creatures. in vivo imaging of small animals in experimental regenerative medicine. Mol Ther 19:1933–1941. https://doi.org/10.1038/mt.2011.194

    Article  CAS  Google Scholar 

  2. Zagorchev L, Oses P, Zhuang ZW et al (2010) Micro computed tomography for vascular exploration. J Angiogenes Res 2:7. https://doi.org/10.1186/2040-2384-2-7

    Article  Google Scholar 

  3. Griffiths JR, Glickson JD (2000) Monitoring pharmacokinetics of anticancer drugs: non-invasive investigation using magnetic resonance spectroscopy. Adv Drug Deliv Rev 41:75–89. https://doi.org/10.1016/S0169-409X(99)00057-5

    Article  CAS  Google Scholar 

  4. Salem KA, Szymanski-Exner A, Lazebnik RS, Breen MS, Gao J, Wilson DL (2002) X-ray computed tomography methods for in vivo evaluation of local drug release systems. IEEE Trans Med Imaging 21:1310–1316

    Article  Google Scholar 

  5. Lyra M, Charalambatou P, Sotiropoulos MDS (2011) Radiation protection of staff in 111In radionuclide therapy is the lead apron shielding effective? Radiat Prot Dosim 147:272–276. https://doi.org/10.1093/rpd/ncr330

    Article  CAS  Google Scholar 

  6. Schueler BA (2010) Operator Shielding: How and Why. Tech Vasc Interv Radiol 13:167–171. https://doi.org/10.1053/j.tvir.2010.03.005

    Article  Google Scholar 

  7. Chida K, Kato M, Kagaya Y et al (2010) Radiation dose and radiation protection for patients and physicians during interventional procedure. J Radiat Res 51:97–105. https://doi.org/10.1269/jrr.09112

    Article  Google Scholar 

  8. Kennedy EV, Iball GR, Brettle DS (2007) Investigation into the effects of lead shielding for fetal dose reduction in CT pulmonary angiography. Br J Radiol 80:631–638. https://doi.org/10.1259/bjr/31771954

    Article  CAS  Google Scholar 

  9. Aral N, Banu Nergis F, Candan C (2016) An alternative X-ray shielding material based on coated textiles. Text Res J 86:803–811. https://doi.org/10.1177/0040517515590409

    Article  CAS  Google Scholar 

  10. Botelho MZ, Künzel R, Okuno E et al (2011) X-ray transmission through nanostructured and microstructured CuO materials. Appl Radiat Isot 69:527–530. https://doi.org/10.1016/j.apradiso.2010.11.002

    Article  CAS  Google Scholar 

  11. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    Article  CAS  Google Scholar 

  12. Ntziachristos V, Ripoll J, Wang LV, Weissleder R (2005) Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23:313–320

    Article  CAS  Google Scholar 

  13. Fa J, Weissleder R (2005) Molecular imaging in the clinical arena. JAMA 293:855–862

    Article  Google Scholar 

  14. Ferrari M (2005) Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 5:161–171

    Article  CAS  Google Scholar 

  15. Whitesides GM (2003) The “right” size in nanobiotechnology. Nat Biotechnol 21:1161–1165

    Article  CAS  Google Scholar 

  16. Park JW (2002) Liposome-based drug delivery in breast cancer treatment. Breast Cancer Res 4:95–99. https://doi.org/10.1186/bcr432

    Article  CAS  Google Scholar 

  17. Kircher MF, Mahmood U, King RS et al (2003) A multimodal nanoparticle for preoperative magnetic resonance imaging and intraoperative optical brain tumor delineation. Cancer Res 63:8122–8125

    CAS  Google Scholar 

  18. Neuwelt EA, Várallyay P, Bagó AG, Muldoon LL, Nesbit G, Nixon R (2004) Imaging of iron oxide nanoparticles with MR and light microscopy in patients with malignant brain tumors. Neuropathol Appl Neurobiol 30:456–471

    Article  CAS  Google Scholar 

  19. Nam J-M, Stoeva SI, Mirkin CA (2004) Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 126:5932–5933. https://doi.org/10.1021/ja049384+

    Article  CAS  Google Scholar 

  20. Rabin O, Manuel Perez J, Grimm J et al (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5:118–122

    Article  CAS  Google Scholar 

  21. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  CAS  Google Scholar 

  22. Hainfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253. https://doi.org/10.1259/bjr/13169882

    Article  CAS  Google Scholar 

  23. Ross RD, Cole LE, Tilley JMR, Roeder RK (2014) Effects of functionalized gold nanoparticle size on X-ray attenuation and substrate binding affinity. Chem Mater 26:1187–1194. https://doi.org/10.1021/cm4035616

    Article  CAS  Google Scholar 

  24. Burgess AE (1985) Physical measurements of heavy metal filter performance. Med Phys 12:225–228. https://doi.org/10.1118/1.595709

    Article  CAS  Google Scholar 

  25. Aljundi T, Jensen T, Gray JN (1996) Heavy metal contamination detection using X-ray. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, vol15A. Plenum Press, New York, pp 465–472

    Chapter  Google Scholar 

  26. Brenner DJ, Hall EJ (2007) Computed Tomography — An Increasing Source of Radiation Exposure. N Engl J Med 357:2277–2284. https://doi.org/10.1056/NEJMra072149

    Article  CAS  Google Scholar 

  27. Kim SC, Lee HK, Cho JH (2014) Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets. Radiat Eff Defects Solids 169:584–591. https://doi.org/10.1080/10420150.2014.920019

    Article  CAS  Google Scholar 

  28. Needleman H (2004) Lead poisoning. Annu Rev Med 55:209–222

    Article  CAS  Google Scholar 

  29. Flegal DRS, Flegal AR (1995) Lead in the biosphere: recent trends. Ambio 24:21–23

    Google Scholar 

  30. Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261

    Article  CAS  Google Scholar 

  31. Zanette I, Weitkamp T, Donath T et al (2010) Two-dimensional X-ray grating interferometer. Phys Rev Lett 105:248102. https://doi.org/10.1103/PhysRevLett.105.248102

    Article  CAS  Google Scholar 

  32. Hammer B, Norskov JK (2002) Why gold is the noblest of all the metals. Nature 376:238–240

    Article  Google Scholar 

  33. Kandanapitiye MS, Gao M, Molter J et al (2014) Synthesis, characterization, and X-ray attenuation properties of ultrasmall BiOI nanoparticles: toward renal clearable particulate CT contrast agents. Inorg Chem 53:10189–10194. https://doi.org/10.1021/ic5011709

    Article  CAS  Google Scholar 

  34. Maghrabi HA, Vijayan A, Deb P, Wang L (2016) Bismuth oxide-coated fabrics for X-ray shielding. Text Res J 86:649–658. https://doi.org/10.1177/0040517515592809

    Article  CAS  Google Scholar 

  35. Lei Y, Du Y, Li J et al (2014) Fabrication of X-ray absorption gratings via micro-casting for grating-based phase contrast imaging. J Micromech Microeng 24:015007. https://doi.org/10.1088/0960-1317/24/1/015007

    Article  CAS  Google Scholar 

  36. Lei Y, Du Y, Li J et al (2013) Application of Bi absorption gratings in grating-based X-ray phase contrast imaging. Appl Phys Express 6:117301. https://doi.org/10.7567/APEX.6.117301

    Article  CAS  Google Scholar 

  37. Nambiar S, Osei EK, Yeow JT (2014) Polymer nanocomposite-based shielding against diagnostic X-rays. J Appl Polym Sci 131:4939–4946. https://doi.org/10.1002/app.37980

    Article  CAS  Google Scholar 

  38. Abdel-Aziz MM, Badran AS, Abdel-Hakem AA et al (1991) Styrene–butadiene rubber/lead oxide composites as gamma radiation shields. J Appl Polym Sci 42:1073–1080. https://doi.org/10.1002/app.1991.070420420

    Article  CAS  Google Scholar 

  39. Harish V, Nagaiah N, Prabhu TN, Varughese KT (2009) Preparation and characterization of lead monoxide filled unsaturated polyester based polymer composites for gamma radiation shielding applications. J Appl Polym Sci 112:1503–1508. https://doi.org/10.1002/app.29633

    Article  CAS  Google Scholar 

  40. Kean S (2011) The disappearing spoon (and other true tales of madness, love, and the history of the world from the periodic table of elements). Back Bay Books, New York

    Google Scholar 

  41. Sadler PJ, Li H, Sun H (1999) Coordination chemistry of metals in medicine: target sites for bismuth. Coord Chem Rev 185:689–709. https://doi.org/10.1016/S0010-8545(99)00018-1

    Article  Google Scholar 

  42. Slikkerveer A, de Wolff FA (1989) Pharmacokinetics and toxicity of bismuth compounds. Med Toxicol Adverse Drug Exp 4:303–323. https://doi.org/10.1007/BF03259915

    Article  CAS  Google Scholar 

  43. Sun H, Sadler PJ (1999) Bismuth antiulcer complexes. In: Clarke MJ, Sadler PJ (eds) Metallopharmaceuticals II: diagnosis and therapy. Springer, Berlin, pp 159–185

    Chapter  Google Scholar 

  44. Suzuki H, Komatsu N, Ogawa T, Murafuji T, Ikegami T, Matano Y (2001) Organobismuth chemistry. Elsevier, Amsterdam

    Google Scholar 

  45. Briand GG, Burford N (1999) Bismuth compounds and preparations with biological or medicinal relevance. Chem Rev 99:2601–2658. https://doi.org/10.1021/cr980425s

    Article  CAS  Google Scholar 

  46. Gao X, Zhang X, Wang Y et al (2015) An in vitro study on the cytotoxicity of bismuth oxychloride nanosheets in human HaCaT keratinocytes. Food Chem Toxicol 80:52–61. https://doi.org/10.1016/j.fct.2015.02.018

    Article  CAS  Google Scholar 

  47. Li Y, Song Z, Li C et al (2013) Efficient near-infrared to visible and ultraviolet upconversion in polycrystalline BiOCl:Er3+/Yb3+ synthesized at low temperature. Ceram Int 39:8911–8916. https://doi.org/10.1016/j.ceramint.2013.04.085

    Article  CAS  Google Scholar 

  48. Sastri VR (2014) Polymer additives used to enhance material properties for medical device applications. In: Sastri VR (ed) Plastics in medical devices: properties, requirements and applications. Elsevier, Amsterdam, pp 55–72

    Chapter  Google Scholar 

  49. El-Sarraf MA, Abdo AE (2013) Insulating epoxy/barite and polyester/barite composites for radiation attenuation. Appl Radiat Isot 79:18–24

    Article  CAS  Google Scholar 

  50. Kim SC, Dong KR, Chung WK (2012) Medical radiation shielding effect by composition of barium compounds. Ann Nucl Energy 47:1–5

    Article  CAS  Google Scholar 

  51. Kobayashi S, Hosoda N, Takashima R (1997) Tungsten alloys as radiation protection materials. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 390:426–430. https://doi.org/10.1016/S0168-9002(97)00392-6

    Article  CAS  Google Scholar 

  52. Noor NZA, Siddiqui SA, Hart R, Low IM (2013) Effect of particle size, filler loadings and X-ray tube voltage on the transmitted X-ray transmission in tungsten oxide—epoxy composites. Appl Radiat Isot 71:62–67. https://doi.org/10.1016/j.apradiso.2012.09.012

    Article  CAS  Google Scholar 

  53. Auffan M, Rose J, Bottero J-Y et al (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nano 4:634–641

    Article  CAS  Google Scholar 

  54. Warheit DB (2004) Nanoparticles. Mater Today 7:32–35. https://doi.org/10.1016/S1369-7021(04)00081-1

    Article  CAS  Google Scholar 

  55. Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976. https://doi.org/10.1016/j.envint.2006.06.014

    Article  CAS  Google Scholar 

  56. Taurozzi JS, Hackley VA, Wiesner MR (2011) Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment—issues and recommendations. Nanotoxicology 5:711–729. https://doi.org/10.3109/17435390.2010.528846

    Article  CAS  Google Scholar 

  57. Warheit DB, Sayes CM, Reed KL, Swain KA (2008) Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 120:35–42. https://doi.org/10.1016/j.pharmthera.2008.07.001

    Article  CAS  Google Scholar 

  58. Gould P (2004) Nanoparticles probe biosystems. Mater Today 7:36–43. https://doi.org/10.1016/S1369-7021(04)00082-3

    Article  CAS  Google Scholar 

  59. Friedman H, Singh MS (2003) Radiation transmission measurements for Demron fabric. United States

  60. El HF, Froyer G (2008) Transparent polymers embedding nanoparticles for X-rays attenuation. J Univ Chem Technol Metall 43:221

    Google Scholar 

  61. Gaier JR, Hardebeck WC, Bunch JRT et al (1998) Effect of intercalation in graphite epoxy composites on the shielding of high energy radiation. J Mater Res 13:2297–2301. https://doi.org/10.1557/JMR.1998.0320

    Article  CAS  Google Scholar 

  62. Zhang W, Zeng J, Liu L, Fang Y (2004) A novel property of styrene-butadiene-styrene/clay nanocomposites: radiation resistance. J Mater Chem 14:209–213. https://doi.org/10.1039/B307978C

    Article  Google Scholar 

  63. Azman NZN, Siddiqui SA, Hart R, Low IM (2013) Microstructural design of lead oxide-epoxy composites for radiation shielding purposes. J Appl Polym Sci 128:3213–3219. https://doi.org/10.1002/app.38515

    Article  CAS  Google Scholar 

  64. Burgess IF (2009) The mode of action of dimeticone 4% lotion against head lice Pediculus capitis. BMC Pharmacol 9:3. https://doi.org/10.1186/1471-2210-9-3

    Article  CAS  Google Scholar 

  65. Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61:907–914. https://doi.org/10.1016/S0167-9317(02)00494-X

    Article  Google Scholar 

  66. Sánchez-Arévalo FM, Garnica-Palafox IM, Jagdale P, Hernández-Cordero J, Rodil SE, Okonkwo AO, Robles Hernandez FC, Tagliaferro A (2015) Photomechanical response of composites based on PDMS and carbon soot nanoparticles under IR laser irradiation. Opt Mater Express 5:1792–1805

    Article  Google Scholar 

  67. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. https://doi.org/10.1021/ac980656z

    Article  CAS  Google Scholar 

  68. Jagdale P, Castellino M, Marrec F et al (2014) Nano sized bismuth oxy chloride by metal organic chemical vapour deposition. Appl Surf Sci 303:250–254. https://doi.org/10.1016/j.apsusc.2014.02.158

    Article  CAS  Google Scholar 

  69. Ortiz-Acosta D (2012) Historical material analysis of DC745U pressure pads. USA

  70. Bird J (2015) Science for engineering, 5th edn. Taylor & Francis, Routledge

    Google Scholar 

  71. https://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z83.html

  72. Mahdi KH, Ahmed ZS, Mkhaiber AF (2012) Calculation and study of gemma ray attenuation coefficients for different composites. J Pure Appl Sci 25:133–141

    Google Scholar 

  73. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (eds) (2011) Bismoclite. In: Handbook of mineralogy. Mineralogical Society of America, Chantilly, VA

  74. Masterton WL, Hurley CN (2008) Chemistry: principles and reactions. Cengage Learning, Boston, MA

    Google Scholar 

  75. Fricke BL, Donnelly LF, Frush DP et al (2003) In-plane bismuth breast shields for pediatric CT: effects on radiation dose and image quality using experimental and clinical data. Am J Roentgenol 180:407–411. https://doi.org/10.2214/ajr.180.2.1800407

    Article  Google Scholar 

  76. Einstein AJ, Elliston CD, Groves DW et al (2012) Effect of bismuth breast shielding on radiation dose and image quality in coronary CT angiography. J Nucl Cardiol 19:100–108. https://doi.org/10.1007/s12350-011-9473-x

    Article  Google Scholar 

  77. Cho JH, Kim MS, Rhim JD (2015) Comparison of radiation shielding ratios of nano-sized bismuth trioxide and molybdenum. Radiat Eff Defects Solids 170:651–658. https://doi.org/10.1080/10420150.2015.1080703

    Article  CAS  Google Scholar 

  78. Hossain M, Su M (2012) Nanoparticle location and material-dependent dose enhancement in X-ray radiation therapy. J Phys Chem C 116:23047–23052. https://doi.org/10.1021/jp306543q

    Article  CAS  Google Scholar 

  79. Krause W (1999) Delivery of diagnostic agents in computed tomography. Adv Drug Deliv Rev 37:159–173. https://doi.org/10.1016/S0169-409X(98)00105-7

    Article  CAS  Google Scholar 

  80. Numburi UD, Schoenhagen P, Flamm SD et al (2010) Feasibility of dual-energy CT in the arterial phase: imaging after endovascular aortic repair. Am J Roentgenol 195:486–493. https://doi.org/10.2214/AJR.09.3872

    Article  Google Scholar 

  81. Hoffmann R, Jansen C, König A et al (2001) Stent design related neointimal tissue proliferation in human coronary arteries; an intravascular ultrasound study. Eur Heart J 22:2007–2014

    Article  CAS  Google Scholar 

  82. Butany J, Carmichael K, Leong SW, Collins MJ (2005) Coronary artery stents: identification and evaluation. J Clin Pathol 58:795–804. https://doi.org/10.1136/jcp.2004.024174

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks and acknowledge Mr. Mauro Raimondo for FESEM analysis, Mr. Edgardo Berea Montes for providing the commercial grade Bismuth oxy chloride, and Dr. Marco Ganci for the support during the X-ray analysis of the composite samples. This work is financially support by European commission under PHOSCLEEN Project.

Funding

Funding was provided by FP7 Ideas: European Research Council (Grant Agreement No. 318977).

Author information

Authors and Affiliations

Authors

Contributions

PJ helped in concept, planning, preparation of nanomaterial, composite, and manuscript; MR contributed to data analysis, interpretation, and manuscript composition; RR was involved in carrying out measurements; CV helped in carrying out measurements; FB was involved in carrying out measurements; GC helped in carrying out measurements; AT was involved in conception, experimental design, and manuscript composition.

Corresponding author

Correspondence to Pravin Jagdale.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagdale, P., Rovere, M., Ronca, R. et al. Determination of the X-ray attenuation coefficient of bismuth oxychloride nanoplates in polydimethylsiloxane. J Mater Sci 55, 7095–7105 (2020). https://doi.org/10.1007/s10853-020-04498-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04498-6

Navigation