Skip to main content
Log in

Structure and evolution of multiphase composites for 3D printing

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ethylene-vinyl acetate–glycidyl methacrylate random terpolymer (EVM–GMA, VA = 60 wt%, GMA = 2.9%) was used as a polymeric plasticizer replacing the traditional dioctyl phthalate (DOP) to prepare a polyvinyl chloride (PVC) masterbatch. Polylactic acid (PLA) was applied to blend with the PVC masterbatch in melt to examine the epoxy ring-opening reactions between epoxy groups in EVM–GMA and end carboxyl groups in PLA in order to construct a special phase structure in PVC/PLA improving the mechanical properties and 3D printing performance. The formation and evolution of phase structures were revealed by aids of the unique rheological responses of multi-component composite system. The results showed that with the increase in EVM–GMA content, the phase morphology of PVC/PLA was refined from co-continuous phase structure to denser one and then evolved to sea-island structure. It was also found that the addition of EVM–GMA inhibited the crystallization of PLA and the cold crystallization as well. When PVC/EVM–GMA/PLA was incorporated in weight ratio of 45/5/50, the denser co-continuous phase structure with smaller domain imparted the composite a highest zero shear viscosity and viscous flow activation energy. This unique structure existed stably when the shear rate was less than 230 s−1 or below 180 °C. Consequently, it endowed composite the highest impact strengths and smoothest appearance of 3D printed specimens. Therefore, moderate EVM–GMA is not only a reliable alternative plasticizer for PVC, but also an ideal modifier for the compatibility of PVC/PLA blends which presented an excellent performance in 3D printing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Araújo EM, Hage E, Carvalho AJF (2004) Thermal properties of nylon6/ABS polymer blends: compatibilizer effect. J Mater Sci 39(4):1173–1178. https://doi.org/10.1023/B:JMSC.0000013872.86575.36

    Article  Google Scholar 

  2. Sarasua JR, Arraiza AL, Balerdi P, Maiza I (2005) Crystallization and thermal behaviour of optically pure polylactides and their blends. J Mater Sci 40(8):1855–1862. https://doi.org/10.1007/s10853-005-1204-8

    Article  CAS  Google Scholar 

  3. Li TY, Wang N, Fang QH (2010) Incorporation of modified soy protein isolate as filier in BR/SBR blends. J Mater Sci 45(7):1904–1911. https://doi.org/10.1007/s10853-009-4176-2

    Article  CAS  Google Scholar 

  4. Bama GK, Devi PI, Ramachandran K (2009) Structural and thermal properties of PVDF/PVA blends. J Mater Sci 44(5):1302–1307. https://doi.org/10.1007/s10853-009-3271-8

    Article  CAS  Google Scholar 

  5. Haque MU, Pracella M (2010) Reactive compatibilization of composites of ethylene–vinyl acetate copolymers with cellulose fibres. Compos Part A Appl Sci Manuf 41(10):1545–1550

    Article  Google Scholar 

  6. Lyu Y, Pang JG, Gao ZJ, Zhang QL, Shi XY (2019) Characterization of the compatibility of PVC/PLA blends by aid of rheological responses. Polymer 176:20–29

    Article  CAS  Google Scholar 

  7. Li XL, Xiao Y, Wang B, Xi HL, Ting X (2011) MMT and short time soaking in hexane to suppress DOP migrating from flexible PVC. Adv Mater Res 328–330:4

    Article  Google Scholar 

  8. Jian YH, Liu DP, Ding YL, Li XH, Wang CL (2005) Release of dioctyl phthalate (DOP) from polyvinyl chloride (PVC) in apple packaging. Prog Nat Sci 15(1):145–148

    Article  Google Scholar 

  9. Papaspyrides CD, Tingas SG (2015) Effect of thermal annealing on plasticizer migration in poly(vinyl chloride)/dioctyl phthalate system. J Appl Polym Sci 79(10):1780–1786

    Article  Google Scholar 

  10. Stringer R, Labunska I, Santillo D, Paul J, John S, Angela S (2000) Concentrations of phthalate esters and identification of other additives in PVC children’s toys. Environ Sci Pollut Res 7(1):27–36

    Article  CAS  Google Scholar 

  11. Tarvainen M, Sutinen R, Somppi M, Petteri P, Antti P (2001) Predicting plasticization efficiency from three-dimensional molecular structure of a polymer plasticizer. Pharm Res 18(12):1760

    Article  CAS  Google Scholar 

  12. Lizymol PP, Thomas S, Jayabalan M (1997) Effect of dehydrochlorination of PVC on miscibility and phase separation of binary and ternary blends of poly(vinyl chloride), poly(ethylene-co-vinyl acetate) and poly(styrene-co-acrylonitrile). Polym Int 44(1):23–29

    Article  CAS  Google Scholar 

  13. Lizymol PP, Thomas S (2010) Miscibility studies of polymer blends by viscometry methods. J Appl Polym Sci 51(4):635–641

    Article  Google Scholar 

  14. Lizymol PP, Thomas S (1993) Thermal behaviour of polymer blends: a comparison of the thermal properties of miscible and immiscible systems. Polym Degrad Stab 41(1):59–64

    Article  CAS  Google Scholar 

  15. Nomai J, Jarukumjorn K (2014) Effect of maleic anhydride grafted poly(lactic acid) on properties of sawdust/poly(lactic acid) composites toughened with poly(butylene adipate-co-terephthalate). Adv Mater Res 970:74–78

    Article  Google Scholar 

  16. Zhang YC, Zhu ZF, Wu HY, Qiu YP (2010) Optimization fabrication of plasma treated nano-titanium dioxide particles/PP/PLA composites filaments using melt spinning. Mater Sci Forum 658:467–470

    Article  CAS  Google Scholar 

  17. Haque MU, Puglia D, Fortunati E, Pracella M (2017) Effect of reactive functionalization on properties and degradability of poly(lactic acid)/poly(vinyl acetate) nanocomposites with cellulose nanocrystals. React Funct Polym 110:1–9

    Article  CAS  Google Scholar 

  18. Chen XL, Yu J, Guo SY, Lu SJ, Luo Z, He M (2009) Surface modification of magnesium hydroxide and its application in flame retardant polypropylene composites. J Mater Sci 44(5):1324–1332. https://doi.org/10.1007/s10853-009-3273-6

    Article  CAS  Google Scholar 

  19. Huang ZY, Lu SR, Yang ZY (2011) Studies on the properties of epoxy resins modified with novel liquid crystalline polyurethane. Adv Mater Res 150–151(9):727–731

    Google Scholar 

  20. Kumar M, Mohanty S, Nayak SK, Parvaiz MR (2010) Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Biores Technol 101(21):8406–8415

    Article  CAS  Google Scholar 

  21. Bredikhina ZA, Novikova VG, Zakharychev DV, Bredikhin AA (2004) Solid state properties and effective for guaifenesin, 3-(2-methoxyphenoxy)-1, 2-propanediol. Powder Diffr 19(2):127–132

    Article  Google Scholar 

  22. Hardis R, Jessop JLP, Peters FE, Kessler MR (2013) Cure kinetics characterization and monitoring of an epoxy resin using DSC, Raman spectroscopy, and DEA. Compos Part A Appl Sci Manuf 49(49):100–108

    Article  CAS  Google Scholar 

  23. Vo Hong N, Trujillo E, Puttemans F, Jansens KJA, Goderis B, Puyvelde PV, Verpoest I, Vuure AWV (2016) Developing rigid gliadin based biocomposites with high mechanical performance. Compos Part A Appl Sci Manuf 85:76–83

    Article  CAS  Google Scholar 

  24. Zheng J, Dang H, Feng XY, Chien PH, Hu YY (2017) Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li7La3Zr2O12–polyethylene oxide–tetraethylene glycol dimethyl ether. J Mater Chem A 5(35):18457

    Article  CAS  Google Scholar 

  25. Jojibabu P, Jagannatham M, Haridoss P, Ram GDJ, Deshpande AP, Bakshi SR (2016) Effect of different carbon nano-fillers on rheological properties and lap shear strength of epoxy adhesive joints. Compos A 82:53–64

    Article  CAS  Google Scholar 

  26. Han CD (1973) Influence of the die entry angle on the entrance pressure drop, recoverable elastic energy, and onset of flow instability in polymer melt flow. J Appl Polym Sci 17(5):1403–1413

    Article  CAS  Google Scholar 

  27. Crossley RJ, Schubel PJ, De Focatiis DSA (2013) Time-temperature equivalence in the tack and dynamic stiffness of polymer prepreg and its application to automated composites manufacturing. Compos Part A Appl Sci Manuf 52(5):126–133

    Article  CAS  Google Scholar 

  28. Cheng C, Zhang XL, Meng YB, Zhang ZH, Chen JD, Zhang QQ (2017) Multiresponsive and biocompatible self-healing hydrogel: its facile synthesis in water, characterization and properties. Soft Matter 13(16):3003–3012

    Article  CAS  Google Scholar 

  29. Marciel A, Srivastava S, Tirrell MV (2018) Structure and rheology of polyelectrolyte complex coacervates. Soft Matter 14(13):2454–2464

    Article  CAS  Google Scholar 

  30. Chen HZ, Cheng X, Li JJ, Zhang Y (2018) Dynamic rheological characteristics of polycarbosilance melt in linear viscoelastic region. Silicon 4:1–7

    Google Scholar 

  31. Gilbert L, Picard C, Savary G, Grisel M (2013) Rheological and textural characterization of cosmetic emulsions containing natural and synthetic polymers: relationships between both data. Colloid Surface A 421:150–163

    Article  CAS  Google Scholar 

  32. Rohindra DR, Lata RA, Coll RK (2012) A simple experiment to determine the activation energy of the viscous flow of polymer solutions using a glass capillary viscometer. Eur J Phys 33(5):1457–1464

    Article  Google Scholar 

  33. Pattanayek SK, Ghosh AK (2018) Dynamic shear rheology of colloidal suspensions of surface-modified silica nanoparticles in PEG. J Nanopart Res 20(3):53

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Natural Science Foundation of Shandong Province (ZR2018MEM025), without which the work presented in this article, would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyan Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Y., Yin, H., Chen, Y. et al. Structure and evolution of multiphase composites for 3D printing. J Mater Sci 55, 6861–6874 (2020). https://doi.org/10.1007/s10853-020-04505-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04505-w

Navigation