Skip to main content
Log in

Semiconducting antiferromagnet of Cr2FeSi and CrMn2Si Heusler compound films

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cr2FeSi and CrMn2Si Heusler compound films were experimentally prepared on Si (100) substrate by alternating evaporation method with post-annealing process. The samples have a cubic structure with a space group of Pm3n (223), and the crystallinity is dependent on the Fe (Mn) contents. The exchange bias effect in the bilayer samples confirmed the AFM state of the CrMn1.95Si and Cr1.92FeSi. Analysis of magnetic and transport properties revealed that both Cr2FeSi and CrMn2Si Heusler compound films are highly conductive antiferromagnetic semiconductor with band gap of 0.4–0.5 eV and might have broad half-metallic temperature region. These features suggest that CrMn2Si and Cr2FeSi films could be good candidates in an application of antiferromagnetic spintronics in commercial semiconductor industry, in view of the good structural compatibility between Heusler compound and the mainstream zinc-blende structured semiconductor substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chappert C, Fert A, Van Dau FN (2007) The emergence of spin electronics in data storage. Nat Mater 6:147–157

    Article  Google Scholar 

  2. Sinova J, Žutić I (2012) New moves of the spintronics tango. Nat Mater 11:368–371

    Article  CAS  Google Scholar 

  3. Petti D, Albisetti E, Reichlová H et al (2013) Storing magnetic information in IrMn/MgO/Ta tunnel junctions via filed-cooling. Appl Phys Lett 10(1063/1):4804429

    Google Scholar 

  4. Jungwirth T, Marti X, Wadley P, Wunderlich J (2016) Antiferromagnetic spintronics. Nat Nanotechnol 11:231–241

    Article  CAS  Google Scholar 

  5. Marrows C (2016) Addressing an antiferromagnetic memory. Science 351:558–559

    Article  CAS  Google Scholar 

  6. Jungwirth T, Sinova J, Manchon A, Matri X, Wunderlich J, Felser C (2018) The multiple directions of antiferromagnetic spintronics. Nat Phys 14:200–203

    Article  CAS  Google Scholar 

  7. Loth S, Baumann S, Lutz CP, Eigler DM, Heinrich AJ (2012) Bistability in atomic-scale antiferromagnets. Science 335:196–199

    Article  CAS  Google Scholar 

  8. Marti X, Fina I, Frontera C et al (2014) Room-temperature antiferromagnetic memory resistor. Nat Mater 13:367–374

    Article  CAS  Google Scholar 

  9. Cherifi RO, Ivanovskaya V, Phillips LC et al (2014) Electric-field control of magnetic order above room temperature. Nat Mater 13:345–351

    Article  CAS  Google Scholar 

  10. Wadley P, Howells B, Železný J et al (2016) Electrical switching of an antiferromagnet. Science 351:587–590

    Article  CAS  Google Scholar 

  11. Šmejkal L, Mokrousov Y, Yan BH, MacDonald AH (2018) Topological antiferromagnetic spintronics. Nat Phys 14:242–251

    Article  Google Scholar 

  12. Wadley P, Hills V, Shahedkhah MR et al (2015) Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci Rep. https://doi.org/10.1038/srep17079

    Article  Google Scholar 

  13. Wu HC, Liao ZM, Sumesh Sofin RG, Feng G, Ma XM, Shick AB, Mryasov ON, Shvets IV (2012) Mn2Au: body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitaxy. Adv Mater 24:6374–6379

    Article  CAS  Google Scholar 

  14. Barthem VMTS, Colin CV, Mayaffre H, Juline MH, Givord D (2013) Revealing the properties of Mn2Au for antiferromagnetic spintronics. Nat Commun 4:1–7. https://doi.org/10.1038/ncomms3892

    Article  CAS  Google Scholar 

  15. Lee CH, Anbalagan AK, Chang TW, Fan CL, Chung JC, Chien SC (2019) The exchange bias effect on single layer of Fe-rich FeRh thin film. Mater Lett 254:309–311

    Article  CAS  Google Scholar 

  16. Hong J, Yang T, N’Diaye AT, Bokor J, Yong L (2019) Effects of interface induced natural strains on magnetic properties of FeRh. Nanomaterials 9:1–7. https://doi.org/10.3390/nano9040574

    Article  CAS  Google Scholar 

  17. Galanakis I, Dederichs PH, Papanikolaou N (2002) Slater–Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys Rev B 66:1–9. https://doi.org/10.1103/PhysRevB.66.174429

    Article  CAS  Google Scholar 

  18. Felser C, Fecher GH, Balke B (2007) Spintronics: a challenge for materials science and solid-state chemistry. Angew Chem Int Edit 46:668–699

    Article  CAS  Google Scholar 

  19. Graf T, Felser C, Parkin SSP (2011) Simple rules for the understanding of Heusler compounds. Prog Solid State Chem 39:1–50

    Article  CAS  Google Scholar 

  20. Skaftouros S, Özdoğan K, Şaşıoğlu E, Galanakis I (2013) Generalized Slater–Pauling rule for the inverse Heusler compounds. Phys Rev B. https://doi.org/10.1103/PhysRevB.87.024420

    Article  Google Scholar 

  21. Wang XL (2008) Proposal for a new class of materials: spin gapless semiconductors. Phys Rev Lett 100:1–4. https://doi.org/10.1103/PhysRevLett.100.156404

    Article  CAS  Google Scholar 

  22. Galanakis I (2004) Appearance of half-metallicity in the quaternary Heusler alloys. J Phys Condes Matter 16:3089–3096

    Article  CAS  Google Scholar 

  23. Picozzi S, Continenza A (2002) Co2MnX (X = Si, Ge, Sn) Heusler compounds: an ab initio study of their structural, electronic, and magnetic properties at zero and elevated pressure. Phys Rev B 66:1–9. https://doi.org/10.1103/PhysRevB.66.094421

    Article  CAS  Google Scholar 

  24. Luo HZ, Zhu ZY, Ma L, Xu SF, Liu HY, Qu JP, Li YX, Wu Gh (2007) Electronic structure and magnetic properties of Fe2YSi (Y = Cr, Mn, Fe Co, Ni) Heusler alloys: a theoretical and experimental study. J Phys D Appl Phys 40:7121–7127

    Article  CAS  Google Scholar 

  25. Weht R, Pickett WE (1999) Half-metallic ferrimagnetism in Mn2VAl. Phys Rev B 60:13006–13010. https://doi.org/10.1103/PhysRevB.60.13006

    Article  CAS  Google Scholar 

  26. Feng WW, Dung DD, Shin Y, Van TD, Cho S (2010) Epitaxial growth and magnetic properties of Mn–Ga thin films on GaSb (001). J Korean Phys Soc 56:1382–1386

    Article  CAS  Google Scholar 

  27. Li J, Liu HY, Zhang ZD, Zhang SL, Xu XW (2014) Obtaining half-metallic ferrimagnetism and antiferromagnetism by doping Mn and Fe for DO3-type Heusler compound Cr3Si. J Alloys Compd 597:8–14

    Article  CAS  Google Scholar 

  28. Zaleski P, Biernacka M, Dobrzyński L, Perzyńska K, Rećko K (2003) Magnetic properties of Cr3Si doped Fe and Co. Phys Stat Sol (a) 196:260–262

    Article  CAS  Google Scholar 

  29. Mazzega E, Michelini M, Nava F (1987) Electrical properties of chromium silicide films: Cr3Si and Cr5Si3. J Phys F Met Phys 17:1135–1142

    Article  CAS  Google Scholar 

  30. Singh LJ, Barber ZH, Miyoshi Y, Branford WR, Cohen LF (2004) Structural and transport studies of stoichiometric and off-stoichiometric thin films of the full Heusler alloy Co2MnSi. J Appl Phys 95:7231–7233

    Article  CAS  Google Scholar 

  31. Irklin VY, Katsnelson MI (1990) Ground state and electron-magnon interaction in an itinerant ferromagnet: half-metallic ferromagnets. J Phys Condes Matter 2:7151–7171

    Article  Google Scholar 

  32. Katsnelson MI, Irkhin VY, Chioncel L, Lichtenstein AI, de Groot RA (2008) Half-metallic ferromagnets: from band structure to many-body effects. Rev Mod Phys 80:315–378

    Article  CAS  Google Scholar 

  33. Danan H, Herr A, Meyer AJP (1968) New determinations of the saturation magnetization of nickel and iron. J Appl Phys 39:669–670

    Article  CAS  Google Scholar 

  34. Lin PH, Yang BY, Tsai MH, Chen PC, Huang KF, Lin HH, Lai CH (2019) Manipulating exchange bias by spin–orbit torque. Nat mater 18:335–341

    Article  CAS  Google Scholar 

  35. Chen HY, Chen QY, Li Y, Jiang HW (2006) The effect of a Mn interlayer add on the interface of CoFe/CrPt films. J Funct Mater 37:165–167

    Google Scholar 

  36. Nishioka K, Shigematsu S, Imagawa T, Narishige S (1998) Thickness effect on ferro/antiferromagnetic coupling of Co/CrMnPt systems. J Appl Phys 83:3233–3238

    Article  CAS  Google Scholar 

  37. Dai B, Cai JW, Lai WY, An YK, Mai ZH, Shen F, Liu YZ, Zhang Z (2005) Large exchange bias and high stability of CoFe/CrPt films with CrPt as the pinning layer. Appl Phys Lett 87:1–3. https://doi.org/10.1063/1.2035887

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant Nos. 2652017344, 2652017372).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuwei Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Bao, Z., Zhu, K. et al. Semiconducting antiferromagnet of Cr2FeSi and CrMn2Si Heusler compound films. J Mater Sci 55, 7009–7015 (2020). https://doi.org/10.1007/s10853-020-04456-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04456-2

Navigation