Skip to main content
Log in

X-ray diffraction Rietveld structural analysis of Au–TiO2 powders synthesized by sol–gel route coupled to microwave and sonochemistry

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

TiO2 is one of the most studied photocatalyst, however, in order to enhance the photocatalytic activity, several strategies for chemical or physical modifications have been reported. Among these strategies, microwave and sonochemistry assisted synthesis methods have been attracting attention due to the unique characteristics that can be achieved through it. Au–TiO2 nano powders were synthesized via microwave assisted sol–gel method (SG method) and sonochemistry assisted sol–gel method (SC method) with varying gold load, (containing 0.05, 0.1, 0.3, 0.7, 1.0, 3.0 and 5.0 wt% for SG method and 0.05, 0.1, 0.3, 0.7, 1.0 wt% for SC method). Subsequently, a calcination process was carried out at 450 °C for 3 h. Materials obtained were physicochemical analyzed by SEM, XPS, and XRD analysis. According to XRD analysis, the main crystalline phase of the materials was anatase. Average crystallite size and microstrain present in the powders were studied using the Williamson–Hall method and Debye–Scherrer equation. The crystal structure of all samples was refined by the Rietveld method, and a compression on the unit cell parameters was determined. These analyses revealed an increment in the unit cell strain when Au concentration was increased, and a decrease of the crystallinity in the powders when SG method was used. In the case of SC method samples, crystallinity and strain was found to remain constant.

Highlights

  • Au–TiO2 doped powders were synthesized by microwave and sonochemistry assisted process.

  • Partially oxidized Au was found by XPS with a BE displacement to lower BE.

  • Rietveld refinement show an increase on lattice parameters with Au added.

  • Crystallite size varies in accordance to Au content with microwave synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Manoharan C, Rajendran V, Sivaraj R (2018) Synthesis, characterization and applications of ZnO/TiO2/SiO2 nanocomposite. Orient J Chem 34:1333–1340

    Article  CAS  Google Scholar 

  2. Esquivel K, García JM, Rodríguez FJ et al. (2011) Titanium dioxide doped with transition metals (MxTi1−xO2, M: Ni, Co): synthesis and characterization for its potential application as photoanode. J Nanopart Res 13:3313–3325. https://doi.org/10.1007/s11051-011-0245-y

    Article  CAS  Google Scholar 

  3. Hernández R, Durón-Torres SM, Esquivel K, Guzmán C (2017) Microwave assisted sol-gel synthesis and characterization of M–TiO2 (M = Pt, Au) photocatalysts. In: Characterization of metals and alloys. Springer, Cham, pp 183–189. https://doi.org/10.1007/978-3-319-31694-9_15

    Google Scholar 

  4. Esquivel K, Nava R, Zamudio-Méndez A et al. (2013) Microwave-assisted synthesis of (S)Fe/TiO2 systems: effects of synthesis conditions and dopant concentration on photoactivity. Appl Catal B: Environ 140–141:213–224. https://doi.org/10.1016/j.apcatb.2013.03.047

    Article  CAS  Google Scholar 

  5. Arredondo Valdez HC, García Jiménez G, Gutiérrez Granados S, Ponce de León C (2012) Degradation of paracetamol by advance oxidation processes using modified reticulated vitreous carbon electrodes with TiO2 and CuO/TiO2/Al2O3. Chemosphere 89:1195–1201. https://doi.org/10.1016/j.chemosphere.2012.07.020

    Article  CAS  Google Scholar 

  6. Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46:3669–3686. https://doi.org/10.1007/s10853-011-5378-y

    Article  CAS  Google Scholar 

  7. Pelaez M, Nolan NT, Pillai SC et al. (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B: Environ 125:331–349. https://doi.org/10.1016/j.apcatb.2012.05.036

    Article  CAS  Google Scholar 

  8. Zhang J, Sun B, Xiong X et al. (2014) Removal of emerging pollutants by Ru/TiO2-catalyzed permanganate oxidation. Water Res 63:262–270. https://doi.org/10.1016/j.watres.2014.06.028

    Article  CAS  Google Scholar 

  9. Jia J, Li D, Cheng X et al. (2016) Construction of graphite/TiO2/nickel foam photoelectrode and its enhanced photocatalytic activity. App Catal A: Gen 525:128–136. https://doi.org/10.1016/j.apcata.2016.07.010

    Article  CAS  Google Scholar 

  10. Alsharaeh EH, Bora T, Soliman A et al. (2017) Sol-gel-assisted microwave-derived synthesis of anatase Ag/TiO2/GO nanohybrids toward efficient visible light phenol degradation. Catalysts 7:133. https://doi.org/10.3390/catal7050133

    Article  CAS  Google Scholar 

  11. Reda SM, Khairy M, Mousa MA (2017) Photocatalytic activity of nitrogen and copper doped TiO2 nanoparticles prepared by microwave-assisted sol-gel process. Arabian J Chem. https://doi.org/10.1016/j.arabjc.2017.02.002

    Article  CAS  Google Scholar 

  12. Liu W, Liu Z, Wang G et al. (2017) Carbon coated Au/TiO2 mesoporous microspheres: a novel selective photocatalyst. Sci China Mater 60:438–448. https://doi.org/10.1007/s40843-017-9020-5

    Article  CAS  Google Scholar 

  13. Zhang T, Wang S, Chen F (2016) Pt–Ru bimetal alloy loaded TiO2 photocatalyst and its enhanced photocatalytic performance for CO oxidation. J Phys Chem C 120:9732–9739. https://doi.org/10.1021/acs.jpcc.5b12251

    Article  CAS  Google Scholar 

  14. Aba-Guevara CG, Medina-Ramírez IE, Hernández-Ramírez A et al. (2017) Comparison of two synthesis methods on the preparation of Fe, N-Co-doped TiO2 materials for degradation of pharmaceutical compounds under visible light. Ceram Int 43:5068–5079. https://doi.org/10.1016/j.ceramint.2017.01.018

    Article  CAS  Google Scholar 

  15. Reinke M, Ponomarev E, Kuzminykh Y, Hoffmann P (2015) Combinatorial characterization of TiO2 chemical vapor deposition utilizing titanium isopropoxide. ACS Comb Sci 17:413–420. https://doi.org/10.1021/acscombsci.5b00040

    Article  CAS  Google Scholar 

  16. Gao Y, Wang L, Zhou A et al. (2015) Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater Lett 150:62–64. https://doi.org/10.1016/j.matlet.2015.02.135

    Article  CAS  Google Scholar 

  17. Košević M, Stopic S, Bulan A et al. (2017) A continuous process for the ultrasonic spray pyrolysis synthesis of RuO2/TiO2 particles and their application as a coating of activated titanium anode. Adv Powder Technol 28:43–49. https://doi.org/10.1016/j.apt.2016.07.015

    Article  CAS  Google Scholar 

  18. Jasiorski M, Borak B, Łukowiak A, Baszczuk A (2008) Active sol-gel materials. In: Innocenzi P, Zub YL, Kessler VG (eds) Sol-gel methods for materials processing. Springer, Netherlands, p 125–137

    Chapter  Google Scholar 

  19. Han C, Andersen J, Pillai SC et al. (2013) Chapter green nanotechnology: development of nanomaterials for environmental and energy applications. In: Sustainable nanotechnology and the environment: advances and achievements. American Chemical Society, pp 201–229. https://doi.org/10.1021/bk-2013-1124.ch012

    Google Scholar 

  20. Trombi L, Cugini F, Rosa R et al. (2020) Rapid microwave synthesis of magnetocaloric Ni–Mn–Sn Heusler compounds. Scr Materialia 176:63–66. https://doi.org/10.1016/j.scriptamat.2019.09.039

    Article  CAS  Google Scholar 

  21. Kang J, Gao L, Zhang M, et al. (2020) Synthesis of rutile TiO2 powder by microwave-enhanced roasting followed by hydrochloric acid leaching. Adv Powder Technol. https://doi.org/10.1016/j.apt.2019.12.042

    Article  CAS  Google Scholar 

  22. Le T, Wang Q, Pan B et al. (2019) Process regulation of microwave intensified synthesis of Y-type zeolite. Microporous Mesoporous Mater 284:476–485. https://doi.org/10.1016/j.micromeso.2019.04.029

    Article  CAS  Google Scholar 

  23. Tony VCS, Voon CH, Lim BY et al. (2019) Synthesis of silicon carbide nanomaterials by microwave heating: effect of types of carbon nanotubes. Solid State Sci 98:106023. https://doi.org/10.1016/j.solidstatesciences.2019.106023

    Article  CAS  Google Scholar 

  24. de Santiago Colín DM, Martínez-Chávez LA, Cuán Á et al. (2018) Sonochemical coupled synthesis of Cr-TiO2 supported on Fe3O4 structures and chemical simulation of the degradation mechanism of Malachite Green dye. J Photochem Photobiol A: Chem 364:250–261. https://doi.org/10.1016/j.jphotochem.2018.06.004

    Article  CAS  Google Scholar 

  25. Guo W, Lin Z, Wang X, Song G (2003) Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides. Microelectron Eng 66:95–101. https://doi.org/10.1016/S0167-9317(03)00031-5

    Article  CAS  Google Scholar 

  26. Ambati R, Gogate PR (2018) Ultrasound assisted synthesis of iron doped TiO2 catalyst. Ultrason Sonochem 40:91–100. https://doi.org/10.1016/j.ultsonch.2017.07.002

    Article  CAS  Google Scholar 

  27. Ali Dheyab M, Abdul Aziz A, Jameel MS, et al. (2019) Mechanisms of effective gold shell on Fe3O4 core nanoparticles formation using sonochemistry method. Ultrason Sonochem 104865. https://doi.org/10.1016/j.ultsonch.2019.104865

    Article  CAS  Google Scholar 

  28. Kaviyarasan K, Vinoth V, Sivasankar T et al. (2019) Photocatalytic and photoelectrocatalytic performance of sonochemically synthesized Cu2O@TiO2 heterojunction nanocomposites. Ultrason Sonochem 51:223–229. https://doi.org/10.1016/j.ultsonch.2018.10.022

    Article  CAS  Google Scholar 

  29. Rao A, Pundir VS, Tiwari A et al. (2018) Investigating the effect of dopant type and concentration on TiO2 powder microstructure via rietveld analysis. J Phys Chem Solids 113:164–176. https://doi.org/10.1016/j.jpcs.2017.10.030

    Article  CAS  Google Scholar 

  30. Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J Appl Cryst 20:79–83. https://doi.org/10.1107/S0021889887087090

    Article  CAS  Google Scholar 

  31. Khorsand Zak A, Abd. Majid WH, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci 13:251–256. https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  CAS  Google Scholar 

  32. Rajesh Kumar B, Hymavathi B (2017) X-ray peak profile analysis of solid-state sintered alumina doped zinc oxide ceramics by Williamson–Hall and size-strain plot methods. J Asian Ceram Soc 5:94–103. https://doi.org/10.1016/j.jascer.2017.02.001

    Article  Google Scholar 

  33. Ghasemi Hajiabadi M, Zamanian M, Souri D (2019) Williamson-Hall analysis in evaluation of lattice strain and the density of lattice dislocation for nanometer scaled ZnSe and ZnSe:Cu particles. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.04.107

    Article  CAS  Google Scholar 

  34. Kibasomba PM, Dhlamini S, Maaza M et al. (2018) Strain and grain size of TiO2 nanoparticles from TEM, Raman spectroscopy and XRD: The revisiting of the Williamson-Hall plot method. Results Phys 9:628–635. https://doi.org/10.1016/j.rinp.2018.03.008

    Article  Google Scholar 

  35. Chi M, Sun X, Sujan A et al. (2019) A quantitative XPS examination of UV induced surface modification of TiO2 sorbents for the increased saturation capacity of sulfur heterocycles. Fuel 238:454–461. https://doi.org/10.1016/j.fuel.2018.10.114

    Article  CAS  Google Scholar 

  36. Duan D, Hao C, Shi W et al. (2019) Au/CeO2 nanorods modified by TiO2 through a combining dealloying and calcining method for low-temperature CO oxidation. Appl Surf Sci 484:354–364. https://doi.org/10.1016/j.apsusc.2019.04.130

    Article  CAS  Google Scholar 

  37. Varnagiris S, Medvids A, Lelis M et al. (2019) Black carbon-doped TiO2 films: Synthesis, characterization and photocatalysis. J Photochem Photobiol A: Chem 382:111941. https://doi.org/10.1016/j.jphotochem.2019.111941

    Article  CAS  Google Scholar 

  38. Zuñiga-Ibarra VA, Shaji S, Krishnan B et al. (2019) Synthesis and characterization of black TiO2 nanoparticles by pulsed laser irradiation in liquid. Appl Surf Sci 483:156–164. https://doi.org/10.1016/j.apsusc.2019.03.302

    Article  CAS  Google Scholar 

  39. Chenakin S, Kruse N (2018) Combining XPS and ToF-SIMS for assessing the CO oxidation activity of Au/TiO2 catalysts. J Catal 358:224–236. https://doi.org/10.1016/j.jcat.2017.12.010

    Article  CAS  Google Scholar 

  40. Iatsunskyi I, Kempiński M, Nowaczyk G et al. (2015) Structural and XPS studies of PSi/TiO2 nanocomposites prepared by ALD and Ag-assisted chemical etching. Appl Surf Sci 347:777–783. https://doi.org/10.1016/j.apsusc.2015.04.172

    Article  CAS  Google Scholar 

  41. Wang Y, Yang C, Chen A et al. (2019) Influence of yolk-shell Au@TiO2 structure induced photocatalytic activity towards gaseous pollutant degradation under visible light. Appl Catal B: Environ 251:57–65. https://doi.org/10.1016/j.apcatb.2019.03.056

    Article  CAS  Google Scholar 

  42. Greczynski G, Hultman L (2018) Reliable determination of chemical state in x-ray photoelectron spectroscopy based on sample-work-function referencing to adventitious carbon: resolving the myth of apparent constant binding energy of the C 1s peak. Appl Surf Sci 451:99–103. https://doi.org/10.1016/j.apsusc.2018.04.226

    Article  CAS  Google Scholar 

  43. Lopez T, Cuevas JL, Ilharco L et al. (2018) XPS characterization and E. Coli DNA degradation using functionalized Cu/TiO2 nanobiocatalysts. Mol Catal 449:62–71. https://doi.org/10.1016/j.mcat.2018.02.010

    Article  CAS  Google Scholar 

  44. Kruse N, Chenakin S (2011) XPS characterization of Au/TiO2 catalysts: binding energy assessment and irradiation effects. App Catal A: Gen 391:367–376. https://doi.org/10.1016/j.apcata.2010.05.039

    Article  CAS  Google Scholar 

  45. Bhattacharya AK, Pyke DR, Walker GS, Werrett CR (1997) The surface reactivity of different aluminas as revealed by their XPS C1s spectra. Appl Surf Sci 108:465–470. https://doi.org/10.1016/S0169-4332(96)00685-X

    Article  CAS  Google Scholar 

  46. Zhang A, Zhang L, Jing G et al. (2018) Promotion of Au3+ reduction on catalytic performance over the Au/CuOCeO2 catalysts for preferential CO oxidation. Int J Hydrog Energy 43:10322–10333. https://doi.org/10.1016/j.ijhydene.2018.04.081

    Article  CAS  Google Scholar 

  47. Radnik J, Mohr C, Claus P (2003) On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis. Phys Chem Chem Phys 5:172–177. https://doi.org/10.1039/B207290D

    Article  CAS  Google Scholar 

  48. Zou Z, Zhou Z, Wang H, Yang Z (2017) Effect of Au clustering on ferromagnetism in Au doped TiO2 films: theory and experiments investigation. J Phys Chem Solids 100:71–77. https://doi.org/10.1016/j.jpcs.2016.09.011

    Article  CAS  Google Scholar 

  49. Arabatzis IM, Stergiopoulos T, Andreeva D et al. (2003) Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation. J Catal 220:127–135. https://doi.org/10.1016/S0021-9517(03)00241-0

    Article  CAS  Google Scholar 

  50. Corro G, Cebada S, Pal U, Fierro JLG (2017) Au0–Au3+ bifunctional site mediated enhanced catalytic activity of Au/ZnO composite in diesel particulate matter oxidation. J Catal 347:148–156. https://doi.org/10.1016/j.jcat.2017.01.011

    Article  CAS  Google Scholar 

  51. Casaletto MP, Longo A, Martorana A et al. (2006) XPS study of supported gold catalysts: the role of Au0 and Au species as active sites. Surf Interface Anal 38:215–218. https://doi.org/10.1002/sia.2180

    Article  CAS  Google Scholar 

  52. Stadnichenko AI, Koshcheev SV, Boronin AI (2015) An XPS and TPD study of gold oxide films obtained by exposure to RF-activated oxygen. J Struct Chem 56:557–565. https://doi.org/10.1134/S0022476615030245

    Article  CAS  Google Scholar 

  53. Pestryakov AN, Lunin VV, Kharlanov AN et al. (2002) Influence of modifying additives on electronic state of supported gold. J Mol Struct 642:129–136. https://doi.org/10.1016/S0022-2860(02)00402-7

    Article  CAS  Google Scholar 

  54. Pestryakov AN, Lunin VV (2000) Physicochemical study of active sites of metal catalysts for alcohol partial oxidation. J Mol Catal A: Chem 158:325–329. https://doi.org/10.1016/S1381-1169(00)00099-6

    Article  CAS  Google Scholar 

  55. Li FB, Li XZ (2002) Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl Catal A: Gen 228:15–27. https://doi.org/10.1016/S0926-860X(01)00953-X

    Article  CAS  Google Scholar 

  56. Du Z, Feng C, Li Q et al. (2008) Photodegradation of NPE-10 surfactant by Au-doped nano-TiO2. Colloids Surf A: Physicochem Eng Asp 315:254–258. https://doi.org/10.1016/j.colsurfa.2007.08.028

    Article  CAS  Google Scholar 

  57. Langford JI, Cernik RJ, Louër D (1991) The breadth and shape of instrumental line profiles in high-resolution powder diffraction. J Appl Cryst 24:913–919. https://doi.org/10.1107/S0021889891004375

    Article  Google Scholar 

  58. Murugesan S, Thirumurugesan R, Mohandas E, Parameswaran P (2019) X-ray diffraction Rietveld analysis and Bond Valence analysis of nano titania containing oxygen vacancies synthesized via sol-gel route. Mater Chem Phys 225:320–330. https://doi.org/10.1016/j.matchemphys.2018.12.061

    Article  CAS  Google Scholar 

  59. Verma S, Rani S, Kumar S, Khan MAM (2018) Rietveld refinement, micro-structural, optical and thermal parameters of zirconium titanate composites. Ceram Int 44:1653–1661. https://doi.org/10.1016/j.ceramint.2017.10.090

    Article  CAS  Google Scholar 

  60. Wang C, Cheng BL, Wang SY et al. (2005) Effects of oxygen pressure on lattice parameter, orientation, surface morphology and deposition rate of (Ba0.02Sr0.98)TiO3 thin films grown on MgO substrate by pulsed laser deposition. Thin Solid Films 485:82–89. https://doi.org/10.1016/j.tsf.2005.03.055

    Article  CAS  Google Scholar 

  61. Pan Y, Guan WM (2019) Origin of enhanced corrosion resistance of Ag and Au doped anatase TiO2. Int J Hydrog Energy 44:10407–10414. https://doi.org/10.1016/j.ijhydene.2019.02.131

    Article  CAS  Google Scholar 

  62. Olvera-Rodríguez I, Hernández R, Medel A et al. (2019) TiO2/Au/TiO2 multilayer thin-film photoanodes synthesized by pulsed laser deposition for photoelectrochemical degradation of organic pollutants. Sep Purif Technol 224:189–198. https://doi.org/10.1016/j.seppur.2019.05.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from Project FIN201810 funding from FOFI-UAQ-2018. RH thanks CONACYT for the Ph.D. grant awarded.

Author contribution

KE conceived and designed the experiments; LE-A and RV characterized all samples, RH, JRH-R and AM-C synthesized the samples, collected and analyzed the data. All authors discussed the experiment results and contributed to the writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Esquivel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández, R., Hernández-Reséndiz, J.R., Martínez-Chávez, A. et al. X-ray diffraction Rietveld structural analysis of Au–TiO2 powders synthesized by sol–gel route coupled to microwave and sonochemistry. J Sol-Gel Sci Technol 95, 239–252 (2020). https://doi.org/10.1007/s10971-020-05264-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05264-5

Keywords

Navigation