Synthesis 2020; 52(12): 1719-1737
DOI: 10.1055/s-0039-1690843
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Photocatalytic Decarboxylative Coupling Reactions in Medicinal Chemistry

Lindsay McMurray
Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge, UK   Email: lindsay.mcmurray1@astrazeneca.com
,
Thomas M. McGuire
,
Rachel L. Howells
› Author Affiliations
Further Information

Publication History

Received: 08 January 2020

Accepted after revision: 08 February 2020

Publication Date:
09 March 2020 (online)


Abstract

This review covers recent advances in decarboxylative photocatalysis applicable to the medicinal chemist. The review is not intended to be exhaustive, but instead is focussed on transformations that could be useful in the synthesis of drug-like compounds in order to highlight the utility of this methodology in the development of new pharmaceutical candidates.

1 Introduction

2 C–C Bond Formation

3 C–N and C–O Bond Formation

4 Fluorination and Trifluoromethylation

5 Hydrodecarboxylation

6 Protein Functionalisation

7 Conclusion

 
  • References

    • 1a Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 1b Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 1c Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 1d Schultz DM, Yoon TP. Science 2014; 343: 985
    • 1e Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
    • 1f Shaw MH, Twilton J, MacMillan DW. C. J. Org. Chem. 2016; 81: 6898
    • 1g Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 2a Lovering F, Bikker J, Humblet C. J. Med. Chem. 2009; 52: 6752
    • 2b Angnes RA, Li Z, Correia CR. D, Hammond GB. Org. Biomol. Chem. 2015; 13: 9152
    • 2c Brown DG, Boström J. J. Med. Chem. 2016; 59: 4443
    • 2d Douglas JJ, Sevrin MJ, Stephenson CR. J. Org. Process Res. Dev. 2016; 20: 1134
    • 2e Bogdos MK, Pinard E, Murphy JA. Beilstein J. Org. Chem. 2018; 14: 2035
    • 2f Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DW, Wood A. Nat. Chem. 2018; 10: 383
    • 2g Campos KR, Coleman PJ, Alvarez JC, Dreher SD, Garbaccio RM, Terrett NK, Tillyer RD, Truppo MD, Parmee ER. Science 2019; 363: 244
    • 3a Moir M, Danon JJ, Reekie TA, Kassiou M. Expert Opin. Drug Discovery. 2019; 14: 1137
    • 3b Cernak T, Dykstra KD, Tyagarajan S, Vachai P, Krska SW. Chem. Soc. Rev. 2016; 45: 546
    • 4a Rahman M, Mukherjee A, Kovalev IS, Kopchuk DS, Zyryanov GV, Tsurkan MV, Majee A, Ranu BC, Charushin VN, Chupakhin ON, Santra S. Adv. Synth. Catal. 2019; 361: 2161
    • 4b Jin Y, Fu H. Asian J. Org. Chem. 2017; 6: 368
    • 4c Huang H, Jia K, Chen Y. ACS Catal. 2016; 6: 4983
    • 4d Xuan J, Zhang Z.-G, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 15632
    • 4e Coyle JD. Chem. Rev. 1978; 78: 97
    • 5a Hunsdiecker H, Hunsdiecker C, Vogt E. US 2176181, 1939 ; Chem. Abstr. 1940, 34, 1685
    • 5b Hunsdiecker C, Hunsdiecker H. Ber. Dtsch. Chem. Ges. B 1942; 75: 291
    • 6a Barton DH. R, Bridon D, Zard SZ. Tetrahedron Lett. 1984; 25: 5777
    • 6b Barton DH. R, Crich D, Kretzschmar G. Tetrahedron Lett. 1984; 25: 1055
  • 7 Studer A. Chem. Eur. J. 2001; 7: 1159
    • 8a Vila C. ChemCatChem 2015; 7: 1790
    • 8b Hoffmann N. ChemCatChem 2015; 7: 393
    • 8c Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
    • 8d Hopkinson MN, Tlahuext-Aca A, Glorius F. Acc. Chem. Res. 2016; 49: 2261
    • 8e Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
    • 8f Zhou W.-J, Zhang Y.-H, Yong-Yuan G, Liang S, Da-Gang Y. Synthesis 2018; 50: 3359
    • 9a Okada K, Okamoto K, Oda M. J. Am. Chem. Soc. 1988; 110: 8736
    • 9b Okada K, Okamoto K, Moriat N, Okubo K, Oda M. J. Am. Chem. Soc. 1991; 113: 9401
    • 10a Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan C.-M, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
    • 10b Qin T, Cornella J, Li C, Malins LR, Edwards JT, Kawamura S, Maxwell BD, Eastgate MD, Baran PS. Science 2016; 352: 801
    • 10c Edwards JT, Merchant RR, McClymont KS, Knouse KW, Qin T, Malins LR, Vokits B, Shaw SA, Bao D.-H, Wei F.-L, Zhou T, Eastgate MD, Baran PS. Nature 2017; 545: 213
  • 11 Fawcett A, Pradeilles J, Wang Y, Mutsuga T, Myers EL, Aggarwal VK. Science 2017; 357: 283
  • 12 Mao R, Frey A, Balon J, Hu X. Nat. Catal. 2018; 1: 120
  • 13 Patra T, Mukherjee S, Ma J, Strieth-Kalthoff F, Glorius F. Angew. Chem. Int. Ed. 2019; 58: 10514
    • 14a Lackner GL, Quasdorf KW, Overman LE. J. Am. Chem. Soc. 2013; 135: 15342
    • 14b Hu D, Wang L, Li P. Org. Lett. 2017; 19: 2770
    • 14c Proctor RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419
  • 15 Johansson Seechurn CC. C, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 16a Wang C.-S, Dixneuf PH, Soule J.-F. Chem. Rev. 2018; 118: 7532
    • 16b Xie J, Jin H, Hashmi AS. K. Chem. Soc. Rev. 2017; 46: 5193
  • 17 Wasa M, Engle KM, Yu J.-Q. Isr. J. Chem. 2010; 50: 605
  • 18 Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
    • 19a Damm W, Giese B, Hartung J, Hasskerl T, Houk KN, Hueter O, Zipse H. J. Am. Chem. Soc. 1992; 114: 4067
    • 19b Arnaud R, Postlethwaite H, Barone V. J. Phys. Chem. 1994; 98: 5913
  • 20 Noble A, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 11602
    • 21a Skucas E, Ngai M.-Y, Komanduri V, Krische MJ. Acc. Chem. Res. 2007; 40: 1394
    • 21b Candeias NR, Montalbano F, Cal PM. S. D, Gois PM. P. Chem. Rev. 2010; 110: 6169
    • 21c Cheikh RB, Chaabouni R, Laurent A, Mison R, Nafti A. Synthesis 1983; 685
    • 21d Johannsen M, Jørgensen KA. Chem. Rev. 1998; 98: 1689
    • 21e Ramirez TA, Shao B, Shi Y. Chem. Soc. Rev. 2012; 41: 931
    • 21f Skoda EM, Davis GC, Wipf P. Org. Process Res. Dev. 2012; 16: 26
  • 22 Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 6195
  • 23 Cavalcanti LN, Molander GA. Top. Curr. Chem. 2016; 374: 39
  • 24 Oderinde MS, Varela-Alvarez A, Aquila B, Robbins DW, Johannes JW. J. Org. Chem. 2015; 80: 7642
  • 25 Lingling C, Lipshultz JM, MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 7929
  • 26 Cheng W.-M, Shang R, Yu H.-Z, Fu Y. Chem. Eur. J. 2015; 21: 13191
    • 27a Jinju J, Jackson M, Guiry PJ. Adv. Synth. Catal. 2019; 361: 3016
    • 27b Campeau L.-C, Hazari N. Organometallics 2019; 381: 3
    • 27c Cornella J, Larrosa I. Synthesis 2012; 44: 653
    • 27d Rodríguez N, Goosen LJ. Chem. Soc. Rev. 2011; 40: 5030
  • 28 Zuo Z, Cong H, Li W, Choi J, Fu GC, MacMillan DW. C. J. Am. Chem. Soc. 2016; 138: 1832
  • 29 Tani K, Asada M, Kobayashi K, Narita M, Ogawa M. WO 2003016254, 2003 .
  • 30 Conner SE, Li J, Zhu G. WO 2007106181, 2007 .
  • 31 Kölmel D, Meng J, Tsai M.-H, Que J, Loach RP, Knauber T, Wan J, Flanagan ME. ACS Comb. Sci. 2019; 21: 588
  • 32 Kölmel DK, Loach RP, Knauber T, Flanagan ME. ChemMedChem 2018; 13: 2159
  • 33 Eidam O, Satz AL. MedChemComm 2016; 7: 1323
    • 34a Flood DT, Asai S, Zhang X, Wang J, Yoon L, Adams ZC, Dillingham BC, Sanchez BB, Vantourout JC, Flanagan ME, Piotrowski DW, Richardson P, Green SA, Shenvi RA, Chen JS, Baran PS, Dawson PE. J. Am. Chem. Soc. 2019; 141: 9998
    • 34b Kodadek T, Paciaroni NG, Balzarini M, Dickson P. Chem. Commun. 2019; 55: 13330
    • 34c Dickson P, Kodadek T. Org. Biomol. Chem. 2019; 17: 4676
  • 35 Cao H, Jiang H, Feng H, Kwan JM. C, Liu X, Wu J. J. Am. Chem. Soc. 2018; 140: 16360
  • 36 Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009
  • 37 Kammer LM, Lipp B, Opatz T. J. Org. Chem. 2019; 84: 2379
    • 38a Kisselev AF, van der Linden WA, Overkleeft HS. Chem. Biol. 2012; 19: 99
    • 38b Kalgutkar AS, Dalvie DK. Expert Opin. Drug Discovery 2012; 7: 561
    • 38c Meadows DC, Gervay-Hague J. Med. Res. Rev. 2006; 26: 793
    • 39a Palmer JT, Rasnick D, Klaus JL, Bromme D. J. Med. Chem. 1995; 38: 3193
    • 39b Engel JC, Doyle PS, Hseih I, McKerrow JH. J. Exp. Med. 1998; 188: 725
    • 40a Zhou Q.-Q, Guo W, Ding W, Wu X, Chen X, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 11196
    • 40b Ochiai M, Masaki Y, Shiro M. J. Org. Chem. 1991; 56: 5511
    • 40c Zhdankin VV, Kuehl CJ, Krasutsky AP, Bolz JT, Simonsen AJ. J. Org. Chem. 1996; 61: 6547
  • 41 Lovering F. MedChemComm 2013; 4: 515
  • 42 Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
    • 43a Martinez CA, Hu S, Dumond Y, Tao J, Kelleher P, Tully L. Org. Process Res. Dev. 2008; 12: 392
    • 43b Mujahid M, Muthukrishnan M. Chirality 2013; 25: 965
  • 44 McCarver SJ, Qiao JX, Carpenter J, Borzilleri RM, Poss MA, Eastgate MD, Miller M, MacMillan DW. C. Angew. Chem. Int. Ed. 2017; 56: 728
  • 45 Henninot A, Collins JC, Nuss JM. J. Med. Chem. 2018; 61: 1382
  • 46 Johnston CP, Smith RT, Allmendinger S, MacMillan DW. C. Nature 2016; 536: 322
  • 47 Hartman GD, Egbertson MS, Halczenko W, Laswell WL, Duggan ME, Smith RL, Naylor AM, Manno PD, Lynch RJ, Zhang G, Chang CT.-C, Gould RJ. J. Med. Chem. 1992; 35: 4640
  • 48 Terrett JA, Cuthbertson JD, Shurtless VW, MacMillan DW. C. Nature 2015; 524: 330
  • 49 Shu C, Mega RS, Andreassen BJ, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2018; 57: 15430
  • 51 Zhao W, Wurz RP, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 1832
  • 52 Liang Y, Zhang X, MacMillan DW. C. Nature 2018; 559: 83
  • 53 Hossain A, Bhattacharyya A, Reiser O. Science 2019; 364: eaav9713
  • 54 Talele TT. J. Med. Chem. 2016; 59: 8712
  • 55 Liu J, Liu Q, Yi H, Qin C, Bai R, Qi X, Lan Y, Lei A. Angew. Chem. Int. Ed. 2014; 53: 502
  • 56 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL. Jr, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
  • 57 Sakakibara Y, Ito E, Fukushima T, Murakami K, Itami K. Chem. Eur. J. 2018; 24: 9254
  • 58 Marcote DC, Street-Jeakings R, Dauncey E, Douglas JJ, Ruffoni A, Leonori D. Org. Biomol. Chem. 2019; 17: 1839
  • 59 Staudinger H, Meyer J. Helv. Chim. Acta 1919; 2: 635
    • 60a Huisgen R. Angew. Chem. 1963; 75: 604
    • 60b Thirumurugan P, Matosiuk D, Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 61a Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 61b Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
    • 61c Kolb HC, Sharpless KB. Drug Discovery Today 2003; 8: 1128
    • 61d Brase S, Gil C, Knepper K, Zimmerman V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 61e Moses EJ, Moorhouse AD. Chem. Soc. Rev. 2007; 36: 1249
    • 61f Iha RK, Wooley KL, Nystrom AM, Burke DJ, Kade MJ, Hawker CJ. Chem. Rev. 2009; 109: 5620
  • 62 Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko NV, Lemmetyinen H. J. Am. Chem. Soc. 2004; 126: 1600
  • 63 Wanka L, Iqbal K, Schreiner PR. Chem. Rev. 2013; 113: 3516
  • 64 Lang SB, Cartwright KC, Welter RS, Locascio TM, Tunge JA. Eur. J. Org. Chem. 2016; 3331
    • 65a Hamilton DS, Nicewicz DA. J. Am. Chem. Soc. 2012; 134: 18577
    • 65b Joshi-Pangu A, Lévesque F, Roth HG, Oliver SF, Campeau L.-C, Nicewicz D, DiRocco DA. J. Org. Chem. 2016; 81: 7244
    • 66a Schiessl HW. Hydrazine and Its Derivatives . In Kirk-Othmer Encylopedia of Chemical Technology, 4th ed., Vol. 13. Kroschwitz JI, Howe-Grant M. Wiley; New York: 1995: 560-606
    • 66b Ragnarsson U. Chem. Soc. Rev. 2001; 30: 205
  • 67 Ghosh AK, Brindisi M. J. Med. Chem. 2015; 58: 2895
  • 68 Yatham VR, Bellotti P, König B. Chem. Commun. 2019; 55: 3489
    • 69a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 69b Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 70a Leung JC. T, Chatalova-Sazepin C, West JG, Rueda-Becerril M, Paquin J.-F, Sammis GM. Angew. Chem. Int. Ed. 2012; 51: 10804
    • 70b Wu X, Meng C, Yuan X, Jia X, Qian X, Ye J. Chem. Commun. 2015; 51: 11864
    • 70c Ventre S, Petronijevic FR, MacMillan DW. C. J. Am. Chem. Soc. 2015; 137: 5654
    • 70d Tarantino G, Hammond C. ACS Catal. 2018; 8: 10321
    • 70e Wang Z, Guo C.-Y, Yang C, Chen J.-P. J. Am. Chem. Soc. 2019; 141: 5617
  • 71 Rueda-Becerril M, Mahe O, Drouin M, Majewski MB, West JG, Wolf MO, Sammis GM, Paquin J.-F. J. Am. Chem. Soc. 2014; 136: 2637
  • 72 Leung JC. T, Sammis GM. Eur. J. Org. Chem. 2015; 2197
  • 73 Kautzky JA, Wang T, Evans RW, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 6522
  • 74 Charpentier J, Fruh N, Togni A. Chem. Rev. 2015; 115: 650
    • 75a Barton DH. R, Dowlatshahi HA, Motherwell WB, Villemin D. J. Chem. Soc., Chem. Commun. 1980; 732
    • 75b Barton DH. R, Crich D, Motherwell WB. Tetrahedron Lett. 1983; 24: 4979
    • 75c Barton DH. R, Crich D, Motherwell WB. J. Chem. Soc., Chem. Commun. 1983; 939
    • 75d Saraiva MF, Couri MR. C, Le Hyaric M, de Almeida MV. Tetrahedron 2009; 65: 3563
  • 76 Cassani C, Bergonzini G, Wallentin C.-J. Org. Lett. 2014; 16: 4228
  • 77 Griffin JD, Zeller MA, Nicewicz DA. J. Am. Chem. Soc. 2015; 137: 11340
  • 79 Bloom S, Liu C, Kölmel DK, Qiao JX, Zhang Y, Poss MA, Ewing WR, MacMillan DW. C. Nat. Chem. 2018; 10: 205
  • 80 Krall N, da Cruz FP, Boutureira O, Bernardes GJ. L. Nat. Chem. 2016; 8: 103
  • 81 Candish L, Freitag M, Gensch T, Glorius F. Chem. Sci. 2017; 8: 3618