Skip to main content
Log in

Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W2N3)

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have sought to improve the electrocatalytic performance of tungsten nitride through synthetic control over chemical composition and morphology. In particular, we have generated a thermodynamically unstable but catalytically promising nitrogen-rich phase of tungsten via a hydrothermal generation of a tungsten oxide intermediate and subsequent annealing in ammonia. The net product consisted of three-dimensional (3D) micron-scale flower-like motifs of W2N3; this architecture not only evinced high structural stability but also incorporated the favorable properties of constituent two-dimensional nanosheets. From a performance perspective, as-prepared 3D W2N3 demonstrated promising hydrogen evolution reaction (HER) activities, especially in an acidic environment with a measured overpotential value of −101 mV at a current density of 10 mA/cm2. To further enhance the electrocatalytic activity, small amounts of precious metal nanoparticles (such as Pt and Au), consisting of variable sizes, were uniformly deposited onto the underlying 3D W2N3 motifs using a facile direct deposition method; these composites were applied towards the CO2 reduction reaction (CO2RR). A highlight of this series of experiments was that Au/W2N3 composites were found to be a much more active HER (as opposed to either a CO2RR or a methanol oxidation reaction (MOR)) catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levy, R. B.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science1973, 181, 547–549.

    Article  CAS  Google Scholar 

  2. Jin, H. Y.; Zhang, H.; Chen, J. Y.; Mao, S. J.; Jiang, Z.; Wang, Y. A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction. J. Mater. Chem. A2018, 6, 10967–10975.

    Article  CAS  Google Scholar 

  3. Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res.2016, 9, 329–343.

    Article  CAS  Google Scholar 

  4. Yin, S. B.; Wang, P.; Lu, J. J.; Wen, Y.; Luo, L.; Key, J.; Wang, N. Z.; Shen, P. K. Tungsten nitride decorated CNTs as efficient hybrid supports for PtRh alloys in electrocatalytic ethanol oxidation. Int. J. Hydrogen Energy2017, 42, 22805–22813.

    Article  CAS  Google Scholar 

  5. Ham, D. J.; Lee, J. S. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies2009, 2, 873–899.

    Article  CAS  Google Scholar 

  6. Yu, H. M.; Yang, X.; Xiao, X.; Chen, M.; Zhang, Q. H.; Huang, L.; Wu, J. B.; Li, T. Q.; Chen, S. M.; Song, L. et al. Atmospheric-pressure synthesis of 2D nitrogen-rich tungsten nitride. Adv. Mater.2018, 30, 1805655.

    Article  Google Scholar 

  7. Wang, S. M.; Yu, X. H.; Lin, Z. J.; Zhang, R. F.; He, D. W.; Qin, J. Q.; Zhu, J. L.; Han, J. T.; Wang, L.; Mao, H. K. et al. Synthesis, crystal structure, and elastic properties of novel tungsten nitrides. Chem. Mater.2012, 24, 3023–3028.

    Article  CAS  Google Scholar 

  8. Kawamura, F.; Yusa, H.; Taniguchi, T. Synthesis of hexagonal phases of WN and W2.25N3 by high-pressure metathesis reaction. J. Am. Ceram. Soc.2018, 101, 949–956.

    Article  CAS  Google Scholar 

  9. Peng, X.; Pi, C. R.; Zhang, X. M.; Li, S.; Huo, K. F.; Chu, P. K. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustainable Energy Fuels2019, 3, 366–381.

    Article  CAS  Google Scholar 

  10. Varga, T.; Haspel, H.; Kormányos, A.; Janáky, C.; Kukovecz, Á.; Kónya, Z. Nitridation of one-dimensional tungsten oxide nanostructures: Changes in structure and photoactivity. Electrochim. Acta2017, 256, 299–306.

    Article  CAS  Google Scholar 

  11. Shehzad, K.; Xu, Y.; Gao, C.; Duan, X. F. Three-dimensional macro-structures of two-dimensional nanomaterials. Chem. Soc. Rev.2016, 45, 5541–5588.

    Article  CAS  Google Scholar 

  12. Zhang, J.; Chen, J. W.; Yang, H. W.; Fan, J. L.; Zhou, F. L.; Wang, Y. C.; Wang, G.; Wang, R. L. Efficient synthesis of nitrogen-doped carbon with flower-like tungsten nitride nanosheets for improving the oxygen reduction reactions. RSC Adv.2017, 7, 33921–33928.

    Article  CAS  Google Scholar 

  13. Sui, S.; Wang, X. Y.; Zhou, X. T.; Su, Y. H.; Riffat, S.; Liu, C. J. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A2017, 5, 1808–1825.

    Article  CAS  Google Scholar 

  14. Mahmood, N.; Yao, Y. D.; Zhang, J. W.; Pan, L.; Zhang, X. W.; Zou, J. J. Electrocatalysts for hydrogen evolution in alkaline electrolytes: Mechanisms, challenges, and prospective solutions. Adv. Sci.2018, 5, 1700464.

    Article  Google Scholar 

  15. Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energy-related applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal.2017, 7, 7196–7225.

    Article  CAS  Google Scholar 

  16. Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev.2011, 111, 7625–7651.

    Article  CAS  Google Scholar 

  17. Xie, Y.; Zhang, Y.; Zhang, M. R.; Zhang, Y.; Liu, J. Q.; Zhou, Q.; Wang, W. F.; Cui, J. W.; Wang, Y.; Chen, Y. et al. Synthesis of W2N nanorods-graphene hybrid structure with enhanced oxygen reduction reaction performance. Int. J. Hydrogen Energy2017, 42, 25924–25932.

    Article  CAS  Google Scholar 

  18. Meng, M. C.; Yan, H. J.; Jiao, Y. Q.; Wu, A. P.; Zhang, X. M.; Wang, R. H.; Tian, C. G. A “1-methylimidazole-fixation” route to anchor small-sized nitrides on carbon supports as non-Pt catalysts for the hydrogen evolution reaction. RSC Adv.2016, 6, 29303–29307.

    Article  CAS  Google Scholar 

  19. Wannakao, S.; Artrith, N.; Limtrakul, J.; Kolpak, A. M. Catalytic activity and product selectivity trends for carbon dioxide electroreduction on transition metal-coated tungsten carbides. J. Phys. Chem. C2017, 121, 20306–20314.

    Article  CAS  Google Scholar 

  20. Abbas, S. C.; Wu, J.; Huang, Y. Y.; Babu, D. D.; Anandhababu, G.; Ghausi, M. A.; Wu, M. X.; Wang, Y. B. Novel strongly coupled tungsten-carbon-nitrogen complex for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy2018, 43, 16–23.

    Article  CAS  Google Scholar 

  21. Choi, D.; Kumta, P. N. Synthesis, structure, and electrochemical characterization of nanocrystalline tantalum and tungsten nitrides. J. Am. Ceram. Soc.2007, 90, 3113–3120.

    Article  CAS  Google Scholar 

  22. Qiu, J. D.; Wang, G. C.; Liang, R. P.; Xia, X. H.; Yu, H. W. Controllable deposition of platinum nanoparticles on graphene as an electrocatalyst for direct methanol fuel cells. J. Phys. Chem. C2011, 115, 15639–15645.

    Article  CAS  Google Scholar 

  23. Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ. Sci.2017, 10, 1180–1185.

    Article  CAS  Google Scholar 

  24. Lee, J. H.; Kattel, S.; Xie, Z. H.; Tackett, B. M.; Wang, J. J.; Liu, C. J.; Chen, J. G Understanding the role of functional groups in polymeric binder for electrochemical carbon dioxide reduction on gold nano-particles. Adv. Funct. Mater.2018, 28, 1804762.

    Article  Google Scholar 

  25. Lee, J. H.; Kattel, S.; Jiang, Z.; Xie, Z. H.; Yao, S. Y.; Tackett, B. M.; Xu, W. Q.; Marinkovic, N. S.; Chen, J. G. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat. Commun.2019, 10, 3724.

    Article  Google Scholar 

  26. Xu, D. D.; Jiang, T. F.; Wang, D. J.; Chen, L. P.; Zhang, L. J.; Fu, Z. W.; Wang, L. L.; Xie, T. F. pH-dependent assembly of tungsten oxide three-dimensional architectures and their application in photocatalysis. ACS Appl. Mater. Interfaces2014, 6, 9321–9327.

    Article  CAS  Google Scholar 

  27. Liu, B.; He, B.; Peng, H. Q.; Zhao, Y. F.; Cheng, J. Y.; Xia, J.; Shen, J. H.; Ng, T. W.; Meng, X. M.; Lee, C. S. et al. Unconventional nickel nitride enriched with nitrogen vacancies as a high-efficiency electrocatalyst for hydrogen evolution. Adv. Sci.2018, 5, 1800406.

    Article  Google Scholar 

  28. Jin, H. Y.; Li, L. Q.; Liu, X.; Tang, C.; Xu, W. J.; Chen, S. M.; Song, L.; Zheng, Y.; Qiao, S. Z. Nitrogen vacancies on 2D layered W2N3: A stable and efficient active site for nitrogen reduction reaction. Adv. Mater.2019, 31, 1902709.

    Article  Google Scholar 

  29. Grinou, A.; Yun, Y.; Cho, S.; Park, H.; Jin, H. J. Dispersion of Pt nanoparticle-doped reduced graphene oxide using aniline as a stabilizer. Materials2012, 5, 2927–2936.

    Article  CAS  Google Scholar 

  30. Scofield, M. E.; Koenigsmann, C.; Bobb-Semple, D.; Tao, J.; Tong, X.; Wang, L.; Lewis, C. S.; Vukmirovic, M. B.; Zhu, Y. M.; Adzic, R. R. et al. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction. Catal. Sci. Technol.2016, 6, 2435–2450.

    Article  CAS  Google Scholar 

  31. Kim, J.; Byun, S.; Smith, A. J.; Yu, J.; Huang, J. X. Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett.2013, 4, 1227–1232.

    Article  CAS  Google Scholar 

  32. Shin, H. J.; Choi, W. M.; Choi, D.; Han, G. H.; Yoon, S. M.; Park, H. K.; Kim, S. W.; Jin, Y. W.; Lee, S. Y.; Kim, J. M. et al. Control of electronic structure of graphene by various dopants and their effects on a nanogenerator. J. Am. Chem. Soc.2010, 132, 15603–15609.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work performed in SSW’s laboratory, supported by the U.S. National Science Foundation under Grant No. CHE-1807640. Structural characterization experiments (TEM, SEM, and XPS) for this manuscript were performed in part at the Center for Functional Nanomaterials, located at Brookhaven National Laboratory, which is supported by the U.S. Department of Energy under Contract No. DE-SC-00112704. Authors from Columbia University acknowledge support from the U.S. Department of Energy, Office of Science, Catalysis Science Program (No. DE-FG02-13ER16381). B. M. T. acknowledges support from the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the DOE under contract number DE-SC0014664.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingguang G. Chen or Stanislaus S. Wong.

Electronic Supplementary Material

12274_2020_2687_MOESM1_ESM.pdf

Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W2N3)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, S., Tackett, B.M., He, Q. et al. Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W2N3). Nano Res. 13, 1434–1443 (2020). https://doi.org/10.1007/s12274-020-2687-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2687-y

Keywords

Navigation