Skip to main content
Log in

Large-scale blow spinning of heat-resistant nanofibrous air filters

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Particulate matter (PM) pollution has become a serious problem worldwide and various kinds of nanofibrous filters aiming to solve the problem have been developed. It is urgent to remove PM from high-temperature pollution sources, such as industrial emissions, coal furnaces, and automobile exhaust gases. However, filtration at pollution sources remains challenging because most existing air filters are not resistant to high temperature. Herein, heat-resistant polyimide (PI) nanofibrous air filters are fabricated via a simple and scalable solution blow-spinning method. These air filters show excellent thermal stability at high temperature up to 420 °C. They exhibit a filtration efficiency as high as 99.73% at ambient temperature and over 97% at 300 °C. In addition, a field test shows that the filters remove > 97% of PM from the car exhaust fumes. Hence, the blow-spun PI nanofibrous membranes combined with the facile preparation strategy have great potential in high temperature air filtration fields and other similar applications such as water purification and protein separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nel, A. Atmosphere. Air pollution-related illness: Effects of particles. Science2005, 308, 804–806.

    Article  CAS  Google Scholar 

  2. Seinfeld, J. H. Urban air pollution: State of the science. Science1989, 243, 745–752.

    Article  CAS  Google Scholar 

  3. Matti Maricq, M. Chemical characterization of particulate emissions from diesel engines: A review. J. Aerosol Sci.2007, 38, 1079–1118.

    Article  Google Scholar 

  4. Pope III, C. A.; Dockery, D. W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc.2006, 56, 709–742.

    Article  CAS  Google Scholar 

  5. Brook, R. D.; Rajagopalan, S.; Pope III, C. A.; Brook, J. R.; Bhatnagar, A.; Diez-Roux, A. V.; Holguin, F.; Hong, Y. L.; Luepker, R. V.; Mittleman, M. A. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association. Circulation2010, 121, 2331–2378.

    Article  CAS  Google Scholar 

  6. Harrison, R. M.; Yin, J. X. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ.2000, 249, 85–101.

    Article  CAS  Google Scholar 

  7. Burnett, R. T.; Pope III, C. A.; Ezzati, M.; Olives, C.; Lim, S. S.; Mehta, S.; Shin, H. H.; Singh, G.; Hubbell, B.; Brauer, M. et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect.2014, 122, 397–403.

    Article  Google Scholar 

  8. Timonen, K. L.; Vanninen, E.; de Hartog, J.; Ibald-Mulli, A.; Brunekreef, B.; Gold, D. R.; Heinrich, J.; Hoek, G.; Lanki, T.; Peters, A. et al. Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. J. Exp. Sci. Environ. Epidemiol.2006, 16, 332–341.

    Article  CAS  Google Scholar 

  9. Hoek, G.; Krishnan, R. M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J. D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health2013, 12, 43.

    Article  CAS  Google Scholar 

  10. Xing, Y. F.; Xu, Y. H.; Shi, M. H.; Lian, Y. X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis.2016, 8, E69–E74.

    Article  Google Scholar 

  11. Song, C. B.; He, J. J.; Wu, L.; Jin, T. S.; Chen, X.; Li, R. P.; Ren, P. P.; Zhang, L.; Mao, H. J. Health burden attributable to ambient PM2.5 in China. Environ. Pollut.2017, 223, 575–586.

    Article  CAS  Google Scholar 

  12. Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N.; Li, W. Y.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun.2015, 6, 6205.

    Article  CAS  Google Scholar 

  13. Li, Y. L.; Sun, H.; Lai, J. P.; Chang, X. Y.; Zhang, P.; Chen, S. L. Determination of carbonyl pollutants adsorbed on ambient particulate matter of type PM2.5 by using magnetic molecularly imprinted microspheres for sample pretreatment and capillary electrophoresis for separation and quantitation. Microchim. Acta2018, 185, 122.

    Article  Google Scholar 

  14. Jing, L.; Shim, K.; Toe, C. Y.; Fang, T.; Zhao, C.; Amal, R.; Sun, K. N.; Kim, J. H.; Ng, Y. H. Electrospun polyacrylonitrile-ionic liquid nanofibers for superior PM2.5 capture capacity. ACS Appl. Mater. Interfaces2016, 8, 7030–7036.

    Article  CAS  Google Scholar 

  15. Khalid, B.; Bai, X. P.; Wei, H. H.; Huang, Y.; Wu, H.; Cui, Y. Direct blow-spinning of nanofibers on a window screen for highly efficient PM2.5 removal. Nano Lett.2017, 17, 1140–1148.

    Article  CAS  Google Scholar 

  16. Zhang, R. F.; Liu, C.; Hsu, P. C.; Zhang, C. F.; Liu, N.; Zhang, J. S.; Lee, H. R.; Lu, Y. Y.; Qiu, Y. C.; Chu, S. et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett.2016, 16, 3642–3649.

    Article  CAS  Google Scholar 

  17. Huang, Y.; Song, J. N.; Yang, C.; Long, Z. Y.; Wu, H. Scalable manufacturing and applications of nanofibers. Mater. Today2019, 28, 98–113.

    Article  CAS  Google Scholar 

  18. Wang, C. Y.; Wu, S. Y.; Jian, M. Q.; Xie, J. R.; Xu, L. P.; Yang, X. D.; Zheng, Q. S.; Zhang, Y. Y. Silk nanofibers as high efficient and lightweight air filter. Nano Res.2016, 9, 2590–2597.

    Article  Google Scholar 

  19. Hinds, W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed.; Wiley: New York, 1999.

    Google Scholar 

  20. Wang, C. S.; Otani, Y. Removal of nanoparticles from gas streams by fibrous filters: A review. Ind. Eng. Chem. Res.2013, 52, 5–17.

    Article  CAS  Google Scholar 

  21. Xu, J. W.; Liu, C.; Hsu, P. C.; Liu, K.; Zhang, R. F.; Liu, Y. Y.; Cui, Y. Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano Lett.2016, 16, 1270–1275.

    Article  CAS  Google Scholar 

  22. Chen, Y. F.; Zhang, S. H.; Cao, S. J.; Li, S. Q.; Chen, F.; Yuan, S.; Xu, C.; Zhou, J. W.; Feng, X.; Ma, X. J. et al. Roll-to-roll production of metal-organic framework coatings for particulate matter removal. Adv. Mater.2017, 29, 1606221.

    Article  Google Scholar 

  23. Kang, C. W.; Ko, Y. J.; Lee, S. M.; Kim, H. J.; Son, S. U. Poly(ethylene terephthalate) fibers with a thin layer of click-based microporous organic network: Enhanced capture performance toward PM2.5. Adv. Mater. Interfaces2018, 5, 1800628.

    Article  Google Scholar 

  24. Gu, G. Q.; Han, C. B.; Tian, J. J.; Jiang, T.; He, C.; Lu, C. X.; Bai, Y.; Nie, J. H.; Li, Z.; Wang, Z. L. Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter. Nano Res.2018, 11, 4090–4101.

    Article  CAS  Google Scholar 

  25. Bai, Y.; Han, C. B.; He, C.; Gu, G. Q.; Nie, J. H.; Shao, J. J.; Xiao, T. X.; Deng, C. R.; Wang, Z. L. Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal. Adv. Funct. Mater.2018, 28, 1706680.

    Article  Google Scholar 

  26. Jeong, S.; Cho, H.; Han, S.; Won, P.; Lee, H.; Hong, S.; Yeo, J.; Kwon, J.; Ko, S. H. High efficiency, transparent, reusable, and active PM2.5 filters by hierarchical Ag nanowire percolation network. Nano Lett.2017, 17, 4339–4346.

    Article  CAS  Google Scholar 

  27. Tian, H. F.; Fu, X. W.; Zheng, M.; Wang, Y.; Li, Y. C.; Xiang, A. M.; Zhong, W. H. Natural polypeptides treat pollution complex: Moisture-resistant multi-functional protein nanofabrics for sustainable air filtration. Nano Res.2018, 11, 4265–4277.

    Article  CAS  Google Scholar 

  28. Han, K. S.; Lee, S.; Kim, M.; Park, P.; Lee, M. H.; Nah, J. Electrically activated ultrathin PVDF-TrFE air filter for high-efficiency PM1.0 filtration. Adv. Funct. Mater.2019, 29, 1903633.

    Article  Google Scholar 

  29. Liu, H.; Zhang, S. C.; Liu, L. F.; Yu, J. Y.; Ding, B. A fluffy dual-network structured nanofiber/net filter enables high-efficiency air filtration. Adv. Funct. Mater.2019, 29, 1904108.

    Article  Google Scholar 

  30. Ma, L.; Verelst, H.; Baron, G. V. Integrated high temperature gas cleaning: Tar removal in biomass gasification with a catalytic filter. Catal. Today2005, 105, 729–734.

    Article  CAS  Google Scholar 

  31. Wang, H. L.; Lin, S.; Yang, S.; Yang, X. D.; Song, J. N.; Wang, D.; Wang, H. Y.; Liu, Z. L.; Li, B.; Fang, M. H. et al. High-temperature particulate matter filtration with resilient yttria-stabilized ZrO2 nanofiber sponge. Small2018, 14, 1800258.

    Article  Google Scholar 

  32. Huang, R. J.; Zhang, Y. L.; Bozzetti, C.; Ho, K. F.; Cao, J. J.; Han, Y. M.; Daellenbach, K. R.; Slowik, J. G.; Platt, S. M.; Canonaco, F. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature2014, 514, 218–222.

    Article  CAS  Google Scholar 

  33. Heidenreich, S. Hot gas filtration—A review. Fuel2013, 104, 83–94.

    Article  CAS  Google Scholar 

  34. Dou, B. L.; Wang, C.; Chen, H. S.; Song, Y. C.; Xie, B. Z.; Xu, Y. J.; Tan, C. Q. Research progress of hot gas filtration, desulphurization and HCl removal in coal-derived fuel gas: A review. Chem. Eng. Res. Des. 2012, 90, 1901–1917.

    Article  CAS  Google Scholar 

  35. Peirce, J. J.; Weiner, R. F.; Vesilind, P. A. Environmental Pollution and Control, 4th ed.; Butterworth-Heinemann: Woburn, 1998.

    Google Scholar 

  36. Agag, T.; Koga, T.; Takeichi, T. Studies on thermal and mechanical properties of polyimide-clay nanocomposites. Polymer2001, 42, 3399–3408.

    Article  CAS  Google Scholar 

  37. Jiang, S. H.; Hou, H. Q.; Agarwal, S.; Greiner, A. Polyimide nanofibers by “green” electrospinning via aqueous solution for filtration applications. ACS Sustainable Chem. Eng.2016, 4, 4797–4804.

    Article  CAS  Google Scholar 

  38. Gu, G. Q.; Han, C. B.; Lu, C. X.; He, C.; Jiang, T.; Gao, Z. L.; Li, C. J.; Wang, Z. L. Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal. ACS Nano2017, 11, 6211–6217.

    Article  CAS  Google Scholar 

  39. Liang, X. X.; Yang, Y.; Jin, X.; Huang, Z. H.; Kang, F. Y. The high performances of SiO2/Al2O3-coated electrospun polyimide fibrous separator for lithium-ion battery. J. Membr. Sci.2015, 493, 1–7.

    Article  CAS  Google Scholar 

  40. Schoental, R.; GlBbard, S. Carcinogens in Chinese incense smoke. Nature1967, 216, 612.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 51788104 and 51661135025), the National Basic Research Program of China (No. 2015CB932500) and China Postdoctoral Science Foundation (Nos. 2018M640124 and 2019T120083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Song, J., Long, Y. et al. Large-scale blow spinning of heat-resistant nanofibrous air filters. Nano Res. 13, 861–867 (2020). https://doi.org/10.1007/s12274-020-2708-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2708-x

Keywords

Navigation