Skip to main content
Log in

A parametric method to design dynamic compensator for high-order quasi-linear systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This research proposes a parametric method to design dynamic compensator for high-order quasi-linear systems. According to the solutions of high-order generalized Sylvester equations, the completely parametric expressions of both the left and right eigenvector matrices and dynamic compensator are established. Based on the proposed method, we transform the closed-loop system into a linear time-invariant system with the desired eigenstructure. Further, the synchronization problem on Genesio–Tesi system and Coullet system is put forward to prove that the parametric method is effective and feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Balachandran, K., Govindaraj, V., Rodríguez-Germá, L., Trujillo, J.J.: Controllability of nonlinear higher order fractional dynamical systems. Nonlinear Dyn. 71, 605–612 (2012). https://doi.org/10.1007/s11071-012-0612-y

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai, Y.F., Qian, J., Xu, S.F.: Robust partial pole assignment problem for high order control systems. Automatica 48(7), 1462–1466 (2012)

    Article  MathSciNet  Google Scholar 

  3. Castillo, F., Witrant, E., Prieur, C., Dugard, L.: Boundary observers for linear and quasi-linear hyperbolic systems with application to flow control. Automatica 49(11), 3180–3188 (2013)

    Article  MathSciNet  Google Scholar 

  4. Chang, J.: Dynamic compensator-based second-order sliding mode controller design for mechanical systems. IET Control Theory Appl. 7(13), 1675–1682 (2013)

    Article  MathSciNet  Google Scholar 

  5. Ding, B.C., Wang, P.J., Hu, J.C.: Dynamic output feedback robust MPC with one free control move for LPV model with bounded disturbance. Asian J. Control 20(2), 755–767 (2018)

    Article  MathSciNet  Google Scholar 

  6. Dong, W.: Consensus of high-order nonlinear continuous-time systems with uncertainty and limited communication data rate. IEEE Trans. Autom. Control 64(5), 2100–2107 (2019). https://doi.org/10.1109/TAC.2018.2863660

    Article  MathSciNet  MATH  Google Scholar 

  7. Duan, G.R.: Generalized Sylvester Equations–Unified Parametric Solutions. CRC Press, Boca Raton (2014)

    Google Scholar 

  8. Duan, G.R.: Parametric control of quasi-linear systems by output feedback. In: Proceedings of 14th International Conference on Control, Automation and Systems, pp. 928–934. Gyeonggi-do (2014)

  9. Duan, G.R.: Parametric control of quasi-linear systems via state feedback. In: Proceedings of 14th International Conference on Control, Automation and Systems, pp. 23–28. Gyeonggi-do (2014)

  10. Duan, G.R., Yu, H.H.: Robust pole assignment in high-order descriptor linear systems via proportional plus derivative state feedback. IET Control Theory Appl. 2(4), 277–287 (2008)

    Article  MathSciNet  Google Scholar 

  11. Fang, L., Ma, L., Ding, S., Zhao, D.: Finite-time stabilization for a class of high-order stochastic nonlinear systems with an output constraint. Appl. Math. Comput. 358, 63–79 (2019). https://doi.org/10.1016/j.amc.2019.03.067

    Article  MathSciNet  MATH  Google Scholar 

  12. Gu, D.K., Liu, G.P., Duan, G.R.: Parametric control to a type of quasi-linear second-order systems via output feedback. Int. J. Control 92(2), 291–302 (2019)

    Article  MathSciNet  Google Scholar 

  13. Gu, D.K., Zhang, D.W.: Parametric control to second-order linear time-varying systems based on dynamic compensator and multi-objective optimization. Appl. Math. Comput. (2019). https://doi.org/10.1016/j.amc.2019.124681

    Article  Google Scholar 

  14. Gu, D.K., Zhang, D.W., Duan, G.R.: Parametric control to a type of descriptor quasi-linear systems via output feedback. IEEE Access 7, 39911–39922 (2019)

    Article  Google Scholar 

  15. Gu, D.K., Zhang, D.W., Duan, G.R.: Parametric control to a type of quasi-linear high-order systems via output feedback. Eur. J. Control 47, 44–52 (2019)

    Article  MathSciNet  Google Scholar 

  16. Gu, D.K., Zhang, D.W., Duan, G.R.: Parametric control to linear time-varying systems based on dynamic compensator and multi-objective optimization. Asian J. Control (2019). https://doi.org/10.1002/asjc.2112

    Article  Google Scholar 

  17. Guo, T.T., Zhang, K., Xie, X.J.: Output feedback stabilization of high-order nonlinear systems with polynomial nonlinearity. J. Frankl. Inst. 355(14), 6579–6596 (2018)

    Article  MathSciNet  Google Scholar 

  18. Han, C.K., Park, J.D.: Quasi-linear systems of PDE of first order with cauchy data of higher codimensions. J. Math. Anal. Appl. 430(1), 390–402 (2015)

    Article  MathSciNet  Google Scholar 

  19. Hua, C., Li, K., Guan, X.: Leader-following output consensus for high-order nonlinear multiagent systems. IEEE Trans. Autom. Control 64(3), 1156–1161 (2019)

    Article  MathSciNet  Google Scholar 

  20. Jiang, M., Xie, X., Zhang, K.: Finite-time stabilization of stochastic high-order nonlinear systems with FT-SISS inverse dynamics. IEEE Trans. Autom. Control 64(1), 313–320 (2019). https://doi.org/10.1109/TAC.2018.2827993

    Article  MathSciNet  MATH  Google Scholar 

  21. Le, X., Wang, J.: Neurodynamics-based robust pole assignment for high-order descriptor systems. IEEE Transa. Neural Netw. Learn. Syst. 26(11), 2962–2971 (2015)

    Article  MathSciNet  Google Scholar 

  22. Li, H.C., Zuo, Z.Q., Wang, Y.J.: Dynamic output feedback control for systems subject to actuator saturation via event-triggered scheme. Asian J. Control 20(1), 207–215 (2018)

    Article  MathSciNet  Google Scholar 

  23. Liu, J., Liu, S., Li, H.: Controllability result of nonlinear higher order fractional damped dynamical system. J. Nonlinear Sci. Appl. 10, 325–337 (2017). https://doi.org/10.22436/jnsa.010.01.31

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, Y.D., Zhang, D.W., Wang, L.M., Gu, D.K.: Parametric control to second-order quasi-linear systems based on dynamic compensator and multi-objective optimization. IEEE Access 7, 67287–67304 (2019)

    Article  Google Scholar 

  25. Liu, Y.Z., Fei, S.M.: Synchronization in the Genesio–Tesi and Coullet systems with nonlinear feedback controlling. Acta Phys. Sin. 54(8), 3486–3490 (2005)

    Google Scholar 

  26. Mehrotra, K., Mahapatra, P.: A jerk model to tracking highly maneuvering targets. IEEE Trans. Aerosp. Electron. Syst. 33, 1094–1105 (1997)

    Article  Google Scholar 

  27. Rozenberg, V.L.: Dynamical input reconstruction problem for a quasi-linear stochastic system. IFAC-PapersOnLine 51(32), 727–732 (2018)

    Article  Google Scholar 

  28. She, S.X., Dong, S.J.: Varying accelerated motion and comfort. Phys. Eng. 16(6), 35–37 (2006)

    Google Scholar 

  29. Shen, D., Xu, J.X.: Distributed learning consensus for heterogenous high-order nonlinear multi-agent systems with output constraints. Automatica 97, 64–72 (2018)

    Article  MathSciNet  Google Scholar 

  30. Sivabalan, M., Sathiyanathan, K.: Controllability results for nonlinear higher order fractional delay dynamical systems with distributed delays in control. Glob. J. Pure Appl. Math. 13(11), 7969–7989 (2017)

    Google Scholar 

  31. Slotine, J.J.E., Li, W.P.: Applied Nonlinear Control. Prentice Hall, Upper Saddle River (1991)

    MATH  Google Scholar 

  32. Sun, Z.Y., Zhou, C.Q., Chen, C.C., Meng, Q.: Fast finite-time partial state feedback stabilization of high-order nonlinear systems with output constraint and dynamic uncertainties. J. Frankl. Inst. (2019). https://doi.org/10.1016/j.jfranklin.2019.05.029

    Article  Google Scholar 

  33. Tang, Y.R., Xiao, X., Li, Y.M.: Nonlinear dynamic modeling and hybrid control design with dynamic compensator for a small-scale UAV quadrotor. Measurement 109, 51–64 (2017)

    Article  Google Scholar 

  34. Wang, X.T., Zhang, L.: Partial eigenvalue assignment with time delay in high order system using the receptance. Linear Algebra Appl. 523, 335–345 (2017)

    Article  MathSciNet  Google Scholar 

  35. Yoo, S.J., Kim, T.H.: Decentralized low-complexity tracking of uncertain interconnected high-order nonlinear systems with unknown high powers. J. Frankl. Inst. 355(11), 4515–4532 (2018)

    Article  MathSciNet  Google Scholar 

  36. Yu, H.H., Duan, G.R.: The analytical general solutions to the higher-order Sylvester matrices equation. Control Theory Appl. 28, 698–702 (2011)

    Google Scholar 

  37. Yuno, T., Ohtsuka, T.: Rendering a prescribed subset invariant for polynomial systems by dynamic state-feedback compensator. IFAC-PapersOnLine 49(18), 1042–1047 (2016)

    Article  Google Scholar 

  38. Zeng, Y., Zhu, W.: Stochastic averaging of quasi-linear systems driven by poisson white noise. Probab. Eng. Mech. 25(1), 99–107 (2010)

    Article  Google Scholar 

Download references

Funding

This work was supported in part by National Natural Science Foundation of China (Grant Numbers 61690210, 61690212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Ke Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, DK., Zhang, DW. A parametric method to design dynamic compensator for high-order quasi-linear systems. Nonlinear Dyn 100, 1379–1400 (2020). https://doi.org/10.1007/s11071-020-05555-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05555-0

Keywords

Navigation