Skip to main content

Advertisement

Log in

Back to the future of a rare plant species of the Chihuahuan desert: tracing distribution patterns across time and genetic diversity as a basis for conservation actions

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Habitat fragmentation and its effects on the persistence of populations and species are of major concern to conservation biology. Penstemon coriaceus is a rare and endemic species from the Mexican Central Plateau and adjacent foothills of the Sierra Madre Occidental and Sierra Madre Oriental, which belongs to the Chihuahuan Desert ecoregion. This is the first study that integrates population genetics and ecological niche modeling analysis as tools to understand the distribution and genetic diversity patterns of a Penstemon species. We used AFLP markers for 144 individuals across 11 populations, and calibrated Ecological niche modeling for three different time periods (current, future and past). Population genetics analysis showed low levels of genetic diversity at the population level and high genetic differentiation among populations. Ecological niche modeling analysis revealed an important decline of the distribution range due to climate change, which can be considered as an indicator for the vulnerability of temperate forest. The integration of both methods revealed that the genetic differentiation observed only show a relationship with the environment variables and the habitat suitability, but not with the geographical distribution of the populations sampled; which indicate the importance of the environmental factors in the determination of genetic processes for P. coriaceus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bell GP, Yanoff S, Karges J, Atchley MJ, Najera S, Arango AM, Ganem SA (2014) Conservation blueprint for the Chihuahuan Desert ecoregion. In: Karges J (ed) Hoyt AC. Proceedings of the sixth symposium on the natural resources of the Chihuahuan Desert Region, USA, pp 1–36

    Google Scholar 

  • Barve N, Barve V, Jiménez-Valverdea A, Lira-Noriega A, Mahera SP, Townsend PA, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Modell 222:1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011

    Article  Google Scholar 

  • Challenger A, Soberón J (2008) Los ecosistemas terrestres. Soberón J, Halffter G, Llorente-Bousquets J: Capital natural de México, vol I. Conocimiento actual de la biodiversidad. CONABIO, México, pp 87–108

    Google Scholar 

  • Chybicki IJ, Oleksa A, Burczyk J (2011) Increased inbreeding and strong kinship structure in Taxus baccata estimated from both AFLP and SSR data. Heredity 107:589–600

    Article  CAS  Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2004) The community climate system model: CCSM3. J Climate 19:2122–2143. https://doi.org/10.1175/JCLI3761.1

    Article  Google Scholar 

  • CONABIO (2008) Capital natural de México, vol. I: Conocimiento actual de la biodiversidad. CONABIO, Mexico

    Google Scholar 

  • Earl DA, vonHoldt BM (2012) Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359

    Article  Google Scholar 

  • Estrada-Contreras I, Equihua M, Laborde J, Martínez-Meyer E, Sánchez-Velásquez LR (2016) Current and future distribution of the tropical tree Cedrela odorata L. in Mexico under climate change scenarios using MaxLike. PLoS ONE 11(10):e0164178. https://doi.org/10.1371/journal.pone.0164178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553

    Article  CAS  PubMed  Google Scholar 

  • Falk DA (1990) Integrated strategies for conserving plant genetic diversity. Ann Missouri Bot Gard 77:38–47

    Article  Google Scholar 

  • Granados-Sánchez D, Sánchez-González A, Granados VRL, Borja de la Rosa A (2011) Ecología de la vegetación del desierto chihuahuense. Rev Chapingo Ser Ciencias Forestales y del Ambiente 17:111–130

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Heinz-Dieter H, Tatiana IT, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Karl-H W, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5:572–597. https://doi.org/10.1002/jame.20038

    Article  Google Scholar 

  • Galpern P, Peres-Neto PR, Polfus J, Manseau M (2014) MEMGENE: spatial pattern detection in genetic distance data. Methods Ecol Evol 5:1116–1120

    Article  Google Scholar 

  • González-Elizondo MS, González-Elizondo M, Tena-Flores JA, Ruacho-González L, López-Enríquez IL (2012) Vegetación de la Sierra Madre Occidental, México: una síntesis. Acta Bot Mex 100:351–403. https://doi.org/10.21829/abm100.2012.40

    Article  Google Scholar 

  • Hardcastle EL, Gentry JL (2009) Conservation Genetics of Delphinium Newtonianum Dw. Moore (Moore's Delphinium) [Ranunculaceae], A rare endemic of the interior highlands. Castanea 74(1):41–52. https://doi.org/10.2179/07-24.1

    Article  Google Scholar 

  • Hasumi H, Emori S (2004) K-1 coupled GCM (MIROC) description. University of Tokyo, Tokyo, Japan, Center for Climate System Research

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Hoyt AC (2002) The Chihuahuan Desert: Diversity at Risk. Endanger Species Bull 27(2):16–17

    Google Scholar 

  • IUCN (2012) The IUCN red list categories and criteria, version 3.1. https://www.iucnredlist.org/. Acceded Oct 2018.

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  Google Scholar 

  • Jian-Ling G, Xiao-Yun Z, Jian-Wen Z, Zhi-Min L, Wen-Guang S, Yong-Hong Z (2016) Genetic diversity of Meconopsis integrifolia (Maxim.) Franch. in the east Himalayae-Hengduan mountains inferred from fluorescent amplified fragment length polymorphism analysis. Biochem Syst Ecol 69:67–75. https://doi.org/10.1016/j.bse.2016.08.007

    Article  CAS  Google Scholar 

  • Kramer TA, Fant BJ, Ashley VM (2011) Influences of landscape and pollinators on population genetic structure: Examples from three Penstemon (Plantaginaceae) species in the Great Basin. Am J Bot 98(1):109–121

    Article  Google Scholar 

  • Lira R, Téllez O, Dávila P (2002) The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Genet Resour Crop Evol 56:691–703. https://doi.org/10.1007/s10722-008-9394-y

    Article  Google Scholar 

  • Lira-Noriega A, Manthey JD (2014) Relationship of genetic diversity and niche centrality: a survey and analysis. Evolution 68–4:1082–1093. https://doi.org/10.1111/evo.12343

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecol Biogeogr 17:145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x

    Article  Google Scholar 

  • Loera I, Ickert-Bond SM, Sosa V (2017) Pleistocene refugia in the Chihuahuan Desert: The phylogeographic and demographic history of the gymnosperm Ephedra compacta. J of Biogr 44:2706–2716

    Article  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  CAS  Google Scholar 

  • Martínez-Méndez N, Aguirre-Planter E, Eguiarte LE, Jaramillo-Correa JP (2016) Modelado de nicho ecológico de las especies del género Abies (Pinaceae) en México: algunas implicaciones Taxonómicas y para la conservación. Bot Sci 94(1):5–24. https://doi.org/10.17129/botsci.508

    Article  Google Scholar 

  • Mastretta-Yanes A, Moreno-Letelier A, Piñero D, Jorgensen TH, Emerson BC (2015) Biodiversity in the Mexican highlands and the interaction of geology, geography and climate within the Trans-Mexican Volcanic Belt. J Biogeogr 42(9):1586–1600

    Article  Google Scholar 

  • Morafka DJ (1977) A biogeographic analysis of the Chihuahuan Desertthrough its herpetofauna. Dr. W. Junk bv Publishers, The Hague

    Book  Google Scholar 

  • Nogueira da Silva L, Essi L, Dorneles WCA, de Souza-Chies TT (2016) Assessing the genetic diversity and population structure of the endangered Chascolytrum bulbosum (Poaceae, Poeae) using AFLP markers. Biochem Syst Ecol 68:236–242. https://doi.org/10.1016/j.bse.2016.07.027

    Article  CAS  Google Scholar 

  • Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A (2006) Simulating Arctic climate warmth and icefield retreat in the Last Interglaciation. Science 311:1751–1753

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pennell FW (1935) The Scrophulariaceae of eastern temperate North America. J Acad Nat Sci Phila 1:196–273

    Google Scholar 

  • Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Modell 213:63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson R, Anderson R, Martínez-Meyer E, Nakamura M, Araújo M (2011) Evaluating model performance and significance. In: Peterson AT (ed) Ecological niches and geographic distributions (MPB-49). Princeton University Press, Princeton, pp 150–182

    Chapter  Google Scholar 

  • Peterson AT, Soberón J (2012) Species distribution modeling and ecological niche modeling: getting the concepts right. Nat Conserv 10(2):1–6. https://doi.org/10.4322/natcon.2012.019

    Article  Google Scholar 

  • Piñero D, Caballero-Mellado J, Cabrera-Toledo D (2008) La diversidad genética como instrumento para la conservación y el aprovechamiento de la biodiversidad: estudios en especies mexicanas

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • QGIS Development Team (2016) QGIS Geographic Information System. Open Source Geospatial Foundation. https://qgis.org.

  • R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Ramasamy R, Ramasamy S, Bushan BB, Girish VN (2014) STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. SpringerPlus 3:431. https://doi.org/10.1186/2193-1801-3-431

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. https://doi.org/10.1046/j.1523-1739.2003.01236.x

    Article  Google Scholar 

  • Reed DH (2005) Relationship between population size and fitness. Conserv Biol 19:563–568. https://doi.org/10.1111/j.1523-1739.2005.00444.x

    Article  Google Scholar 

  • Reed DH (2008) The effects of population size on population viability: From mutation to environmental catastrophes. In: Carroll SP, Fox CW (eds) Conservation biology: evolution in action. Oxford University Press, New York, pp 16–35

    Google Scholar 

  • Rodríguez-Peña RA, Johnson RL, Johnson LA, Anderson CD, Ricks NJ, Farley JM, Robbins MD, Wolfe AD, Stevens MR (2018) Investigating the genetic diversity and differentiation patterns in the Penstemon scariosus species complex under different sample sizes using AFLPs and SSRs. Conserv Genet 19:1335–1348. https://doi.org/10.1007/s10592-018-1103-6

    Article  Google Scholar 

  • Rzedowski J (2006) Vegetación de México. 1ra Edición Digital. CONABIO, México, p 504

    Google Scholar 

  • Ruiz-Sanchez E, Rodriguez-Gomez F, Sosa V (2012) Refugia and geographic barriers of populations of the desert poppy, Hunnemannia fumariifolia (Papaveraceae). Org Divers Evol 12:133–143. https://doi.org/10.1007/s13127-012-0089-z

    Article  Google Scholar 

  • Sáenz-Romero C, Rehfeldt GE, Crookston NL, Duval P, St-Amant R, Beaulieu J, Richardson BA (2010) Spline models of contemporary, 2030, 2060 and 2090 climates for Mexico and their use in understanding climate-change impacts on the vegetation. Clim Change 102:595–623. https://doi.org/10.1007/s10584-009-9753-5

    Article  Google Scholar 

  • Sáenz-Romero C, Rehfeldt GE, Duval P, Lindig-Cisneros RA (2012) Abies religiosa habitat prediction in climatic change scenarios and implications for monarch butterfly conservation in Mexico. Forest Ecol Manag 275:98–106. https://doi.org/10.1016/j.foreco.2012.03.004

    Article  Google Scholar 

  • Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT) (2010) NOM-059-SEMARNAT-2010. Protección ambiental - especies nativas de México de flora y fauna silvestres - categorías de riesgo y especificaciones para su inclusión, exclusión o cambio - lista de especies en riesgo. Diario Oficial de la Federación, México, 77 pp

  • Soberón J, Nakamura M (2009) Niches and distributional areas: concepts, methods, and assumptions. Proc Natl Acad Sci USA 106(2):19644–19650. https://doi.org/10.1073/pnas.0901637106

    Article  PubMed  Google Scholar 

  • Solano E, Feria TP (2007) Ecological niche modeling and geographic distribution of the genus Polianthes L. (Agavaceae) in Mexico: using niche modeling to improve assessments of risk status. Biodivers Conserv 16:1885–1900. https://doi.org/10.1007/s10531-006-9091-0

    Article  Google Scholar 

  • Straw RM (1966) A redefinition of Penstemon (Scrophulariaceae). Brittonia 8(1):80–95

    Article  Google Scholar 

  • Stone BW, Ward A, Farenwald M, Lutz WT, Wolfe AD (2019) Genetic diversity and population structure in Cary’s Beardtongue Penstemon caryi (Plantaginaceae), a rare plant endemic to the eastern Rocky Mountains of Wyoming and Montana. Conserv Genet. 20:1149–1161. https://doi.org/10.1007/s10592-019-01204-1

    Article  CAS  Google Scholar 

  • U.S. Fish and Wildlife Service (FWS) (2019) Species listed in each state based on published historic range and population data. Environ Conserv Online Syst. https://ecos.fws.gov/ecp0/repor ts/speci es-liste d-b. Accessed 15 Jan 2019.

  • Ureta C, Martínez-Meyer E, Perales HR, Álvarez-Buylla ER (2012) Projecting the effects of climate change on the distribution of maize races and their wild relatives in Mexico. Glob Change Biol 18:1073–1082. https://doi.org/10.1111/j.1365-2486.2011.02607

    Article  Google Scholar 

  • Vásquez-Cruz M, Sosa V (2016) New insights on the origin of the woody flora of the Chihuahuan Desert: the case of Lindleya. Ame J Bot 103:1694–1707. https://doi.org/10.3732/ajb.1600080

    Article  Google Scholar 

  • Vásquez-Cruz M, Sosa V (2019) Assembly and origin of the flora of the Chihuahuan Desert: the case of sclerophyllous Rosaceae. J Biogeogr. https://doi.org/10.1111/jbi.13745

    Article  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151

    Article  CAS  Google Scholar 

  • Villarreal-Quintanilla JA, Bartolomé-Hernández JA, Estrada-Castillón E, Ramírez-Rodríguez H, Martínez-Amador SJ (2017) El elemento endémico de la flora vascular del Desierto Chihuahuense. Acta Bot Mex 118:65–96. https://doi.org/10.21829/abm118.2017.1201

    Article  Google Scholar 

  • Villaseñor JL (2004) Los géneros de plantas vasculares de la flora de México. Bol Soc Bot de México 75:105–135

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP, a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Wilson P, Castellanos MC, Wolfe AD, Thomson JD (2006) Shifts between bee and bird pollination in Penstemons. In: Waser NM, Ollerton J (eds) Plant-pollinator interactions, from specialization to general. The University of Chicago Press, Chicago, pp 48–68

    Google Scholar 

  • Wolfe AD (2005) ISSR techniques for evolutionary biology. Methods Enzymol 395:433–458. https://doi.org/10.1016/S0076-6879(05)95009-X

    Article  Google Scholar 

  • Wolfe AD, Randle CP, Datwyler SL, Morawetz JJ, Arguedas N, Diaz J (2006) Phylogeny, taxonomic affinities, and biogeography of Penstemon (Plantaginaceae) based on ITS and cpDNA sequence data. Am J Bot 93:1699–1713. https://doi.org/10.3732/ajb.93.11.1699

    Article  CAS  PubMed  Google Scholar 

  • Wolfe AD, McMullen-Sibul A, Tepedino VJ, Kubatko L, Necamp T, Fassnacht S (2014) Conservation genetics and breeding system of Penstemon debilis (Plantaginaceae), a rare beardtongue endemic to oil shale talus in western Colorado, USA. J Syst Evol 52:598–611. https://doi.org/10.1111/jse.12100

    Article  Google Scholar 

  • WorldClim Global Climate Data Current. https://www.worldclim.org/current. Accessed Sept 2019.

  • WorldClim Global Climate Data Past https://www.worldclim.org/paleo-climate1. Accessed Sept 2019.

  • Wright S (1978) Evolution and the genetics of population, variability within and among natural populations. The University of Chicago Press, Chicago, p 590

    Google Scholar 

  • Zacarías-Correa AG (2015) Filogenia molecular, evolución y taxonomía de Penstemon sección Fasciculus (Plantaginaceae). Master thesis, Instituto de Ecología, A. C, Xalapa, Veracruz, 111 pp

  • Zhu Y, Geng Y, Tersing T, Liu N, Wang Q, Zhong Y (2009) High genetic differentiation and low genetic diversity in Incarvillea younghusbandii, an endemic plant of Qinghai-Tibetan Plateau, revealed by AFLP markers. Biochem Syst Ecol 37:589–596. https://doi.org/10.1016/j.bse.2009.10.007

    Article  CAS  Google Scholar 

  • Zomlefer WB, Comer JR, Lucardi RD, Hamrick JL, Allison JR (2018) Distribution and genetic diversity of the rare plant Veratrum woodii (Liliales: Melanthiaceae) in Georgia: a preliminary study with AFLP fingerprint data. Syst Bot 43(4):858–869. https://doi.org/10.1600/036364418X697779

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by NSF DEB 1455399 (ADW), CONACyT project 20006-11337 and private funding (MSS) and CONACyT Grant 421643 (AGZC). We are grateful to Pedro Castillo, Julio Martínez Rodríguez, Socorro González Elizondo, J. Israel Guadián Marín, Minerva Martínez Calderón and Salvador Guzmán Díaz for their support during the fieldwork. We also thank Rosa A. Rodríguez Peña, José Gilberto Díaz Ayala, Maria Sagatelova, Coleen Thompson, Emiko Waight, Alex Ward, Morgan VanDeCarr and Lydia Mihaly for their support in the laboratory. Finally, we thank Javier Rodríguez Rodríguez and Maria Chanel Juárez for their suggestions to improve the ENM analyses and Yessica Rico Mancebo del Castillo and Benjamin W. Stone for their support with population genetics analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Gabriela Zacarías-Correa.

Additional information

Communicated by Daniel Sanchez Mata.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zacarías-Correa, A.G., Lira-Noriega, A., Pérez-Calix, E. et al. Back to the future of a rare plant species of the Chihuahuan desert: tracing distribution patterns across time and genetic diversity as a basis for conservation actions. Biodivers Conserv 29, 1821–1840 (2020). https://doi.org/10.1007/s10531-020-01962-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-020-01962-2

Keywords

Navigation