Skip to main content
Log in

Self-combustion of Ti-C and Ti-Al Powder Mixture in a Nitrogen Atmosphere: Product Application as Reinforcement in Metal Matrix Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this work, two copper metal matrix composites (MMCs) reinforced with 20 wt.% of Ti(C,N) or Ti2AlN particles were studied. The reinforcement particles were synthesized by flash sintering under 2 bar nitrogen atmosphere causing an SHS reaction ignited by electrical current. This reaction led to produce TiC0.7N0.3 solid solution for the MMC1 reinforcement and Ti2AlN, TiN, and Ti3Al titanium aluminide for the MMC2 reinforcement. Both MMCs were densified by liquid phase sintering. The structural characterization was performed by XRD analysis while the morphology and chemical element distribution of both MMCs were analyzed by SEM and EDS. The structure of the two MMCs was relatively dense and showed good wettability. The mechanical and tribological behavior of MMCs evaluated by nanoindentation and wear testing reveals that the addition of 20 wt.% of reinforcement considerably improves the properties of copper matrix. Indeed, the MMC1 proved to be 3 times harder and 10 times more wear-resistant than the MMC2 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D.B. Miracle, Metal Matrix Composites—From Science to Technological Significance, Compos. Sci. Technol., 2005, 65, p 2526–2540

    Article  CAS  Google Scholar 

  2. F.J. Lino Alves, A.M. Baptista, and A.T. Marques, Metal Matrix Composites in Aerospace Engineering, Advanced Composite Materials for Aerospace Engineering, S. Rana and R. Fangueiro, Ed., Woodhead Publishing, Elsevier Ltd., 2016, p 59–99. https://doi.org/10.1016/B978-0-08-100037-3.00003-1

  3. R. M’Saoubi, D. Axinte, S.L. Soo, C. Nobel, H. Attia, G. Kappmeyer, S. Engin, and W.M. Sim, High Performance Cutting of Advanced Aerospace Alloys and Composite Materials, CIRP Ann. Manuf. Technol., 2015, 64(2), p 557–580. https://doi.org/10.1016/j.cirp.2015.05.002

    Article  Google Scholar 

  4. G.S. Hanumanth and G.A. Irons, Solidification of Particle-Reinforced Metal-Matrix Composites, Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci., 1996, 27(4), p 663–671

    Article  Google Scholar 

  5. K.M. Sree Manu, L. Ajay Raag, T.P.D. Rajan, M. Gupta, and B.C. Pai, Liquid Metal Infiltration Processing of Metallic Composites: A Critical Review, Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci., 2016, 47(5), p 2799–2819

    Article  CAS  Google Scholar 

  6. S.B. Venkata Siva, K.L. Sahoo, R.I. Ganguly, R.R. Dash, S.K. Singh, B.K. Satpathy, and G. Srinivasarao, Preparation of Aluminum Metal Matrix Composite with Novel in Situ Ceramic Composite Particulates, Developed from Waste Colliery Shale Material, Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci., 2013, 44(4), p 800–808

    Article  CAS  Google Scholar 

  7. S. Azem, M. Nechiche, and K. Taibi, Development of Copper Matrix Composite Reinforced with FeAl Particles Produced by Combustion Synthesis, Powder Technol., 2011, 208(2), p 515–520. https://doi.org/10.1016/j.powtec.2010.08.052

    Article  CAS  Google Scholar 

  8. R. Hadian, M. Emamy, and J. Campbell, Modification of Cast Al-Mg2Si Metal Matrix Composite by Li, Metall. Mater. Trans. B Process. Metall. Mater. Process. Sci., 2009, 40(6), p 822–832

    Article  Google Scholar 

  9. A. Mortensen and J. Llorca, Metal Matrix Composites, Annu. Rev. Mater. Res., 2010, 40(1), p 243–270. https://doi.org/10.1146/annurev-matsci-070909-104511

    Article  CAS  Google Scholar 

  10. C.M. Ward-Close, R. Minor, and P.J. Doorbar, Intermetallic-Matrix Composites—A Review, Intermetallics, 1996, 9795(95), p 217–229

    Article  Google Scholar 

  11. Y. Liu, Y. Li, F. Li, H. Cui, L. Zhang, and S. Guo, Synthesis and Microstructure of Ti2AlN Ceramic by Thermal Explosion, Ceram. Int., 2017, 43(16), p 13618–13621. https://doi.org/10.1016/j.ceramint.2017.07.071

    Article  CAS  Google Scholar 

  12. T.W.B. Riyadi, T. Zhang, D. Marchant, and X. Zhu, NiAl–TiC–Al2O3 Composite Formed by Self-Propagation High-Temperature Synthesis Process: Combustion Behaviour, Microstructure, and Properties, J. Alloys Compd., 2019, 805, p 104–112. https://doi.org/10.1016/j.jallcom.2019.04.349

    Article  CAS  Google Scholar 

  13. H.C. Yi, Review (Combustion) Synthesis (SHS) of Powder-Compacted Materials, J. Mater. Sci., 1990, 25(2), p 1159–1168

    Article  CAS  Google Scholar 

  14. A.G. Merzhanov, History and Recent Developments in SHS, Ceram. Int., 1995, 21(5), p 371–379. https://doi.org/10.1016/0272-8842(95)96211-7

    Article  CAS  Google Scholar 

  15. M.P. Behera, T. Dougherty, and S. Singamneni, Conventional and Additive Manufacturing with Metal Matrix Composites: A Perspective, Procedia Manuf., 2019, 30, p 159–166. https://doi.org/10.1016/j.promfg.2019.02.023

    Article  Google Scholar 

  16. P.K. Deshpande and R.Y. Lin, Wear Resistance of WC Particle Reinforced Copper Matrix Composites and the Effect of Porosity, Mater. Sci. Eng. A, 2006, 418(1–2), p 137–145

    Article  Google Scholar 

  17. R.N. Caron and A. Sharif, Copper Alloys: Properties and Applications, Modul. Mater. Sci. Mater. Eng., Ref, 2017, https://doi.org/10.1016/b978-0-12-803581-8.02562-5

    Book  Google Scholar 

  18. L. Zhou, J. Xiong, Z. Guo, J. Ye, and J. Liu, Tribological Performances of Ti(C, N)-Based Cermets with Different Graphite Contents in Dry Sliding Condition, Int. J. Refract. Met. Hard Mater., 2017, 68, p 113–120

    Article  CAS  Google Scholar 

  19. K. Qi, M. Yang, S. Li, J. Liu, T. Li, and J. Ye, Microstructure and Oxidation Behavior of Ti(C, N)-Based Cermets with in Situ Synthesized Ni3Al Phase, Int. J. Refract. Met. Hard Mater., 2018, 73, p 157–161

    Article  CAS  Google Scholar 

  20. S. Kang, Stability of N in Ti(CN) Solid Solutions for Cermet Applications, Powder Metall., 1997, 40(2), p 139–142. https://doi.org/10.1179/pom.1997.40.2.139

    Article  CAS  Google Scholar 

  21. I.J. Jung, S. Kang, S.H. Jhi, and J. Ihm, Study of the Formation of Ti(CN) Solid Solutions, Acta Mater., 1999, 47(11), p 3241–3245

    Article  CAS  Google Scholar 

  22. Q. Xu, X. Ai, J. Zhao, W. Qin, Y. Wang, and F. Gong, Comparison of Ti(C, N)-Based Cermets Processed by Hot-Pressing Sintering and Conventional Pressureless Sintering, J. Alloys Compd., 2015, 619, p 538–543. https://doi.org/10.1016/j.jallcom.2014.08.261

    Article  CAS  Google Scholar 

  23. M. Dios, Z. Gonzalez, P. Alvaredo, R. Bermejo, E. Gordo, and B. Ferrari, Novel Colloidal Approach for the Microstructural Improvement in Ti(C, N)/FeNi Cermets, J. Alloys Compd., 2017, 724, p 327–338

    Article  CAS  Google Scholar 

  24. H. Hu, Y. Cheng, Z. Yin, Y. Zhang, and T. Lu, Mechanical Properties and Microstructure of Ti(C, N) Based Cermet Cutting Tool Materials Fabricated by Microwave Sintering, Ceram. Int., 2015, 41(10), p 15017–15023. https://doi.org/10.1016/j.ceramint.2015.08.053

    Article  CAS  Google Scholar 

  25. M.W. Barsoum, The MN+1AXN Phases: A New Class of Solids: Thermodynamically Stable Nanolaminates, Prog. Solid State Chem., 2000, 28(1–4), p 201–281

    Article  CAS  Google Scholar 

  26. M.W. Barsoum, T. El-Raghy, and A. Procopio, Synthesis of Ti4AIN3 and Phase Equilibria in the Ti-AI-N System, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. A, 2000, 31, p 373–378. https://doi.org/10.1007/s11661-000-0273-1

    Article  Google Scholar 

  27. V.D. Jovic, B.M. Jovic, S. Gupta, T. El-Raghy, and M.W. Barsoum, Corrosion Behavior of Select MAX Phases in NaOH, HCl and H2SO4, Corros. Sci., 2006, 48(12), p 4274–4282

    Article  CAS  Google Scholar 

  28. E.S. Choi, J. Sung, Q.M. Wang, K.H. Kim, A. Busnaina, and M.C. Kang, Material Properties and Machining Performance of Hybrid Ti2AlN Bulk Material for Micro Electrical Discharge Machining, Trans. Nonferrous Met. Soc. China, 2012, 22(SUPPL.3), p s781–s786. https://doi.org/10.1016/s1003-6326(12)61804-4

    Article  CAS  Google Scholar 

  29. Z.M. Sun, Progress in Research and Development on MAX Phases: A Family of Layered Ternary Compounds, Int. Mater. Rev., 2011, 56(3), p 143–166. https://doi.org/10.1179/1743280410Y.0000000001

    Article  CAS  Google Scholar 

  30. Y. Liu, L. Zhang, W. Xiao, L. Zhang, Y. Pu, and S. Guo, Rapid Synthesis of Ti2AlN Ceramic via Thermal Explosion, Mater. Lett., 2015, 149, p 5–7. https://doi.org/10.1016/j.matlet.2015.02.105

    Article  CAS  Google Scholar 

  31. Y. Liu, Y. Li, F. Li, H. Cui, Y. Pu, S. Guo, and Z. Shi, Highly Textured Ti2AlN Ceramic Prepared via Thermal Explosion Followed by Edge-Free Spark Plasma Sintering, Scr. Mater., 2017, 136, p 55–58. https://doi.org/10.1016/j.scriptamat.2017.04.013

    Article  CAS  Google Scholar 

  32. F. Lang and Z. Yu, The Corrosion Resistance and Wear Resistance of Thick TiN Coatings Deposited by Arc Ion Plating, Surf. Coat. Technol., 2001, 145(1–3), p 80–87

    Article  CAS  Google Scholar 

  33. Z. Yan, D. Jiang, X. Gao, M. Hu, D. Wang, Y. Fu, J. Sun, D. Feng, and L. Weng, Friction and Wear Behavior of TiN Films against Ceramic and Steel Balls, Tribol. Int., 2018, 124, p 61–69. https://doi.org/10.1016/j.triboint.2018.03.031

    Article  CAS  Google Scholar 

  34. Z.J. Zhan, D.D. Zhang, C.H. Guo, and W. Chai, Tribological Properties of Ti3SnC2/Cu Composite, Key Eng. Mater., 2014, 602–603, p 519–522. https://doi.org/10.4028/www.scientific.net/KEM.602-603.519

    Article  CAS  Google Scholar 

  35. J. Zhang, J.Y. Wang, and Y.C. Zhou, Structure Stability of Ti3AlC2 in Cu and Microstructure Evolution of Cu-Ti3AlC2 composites, Acta Mater., 2007, 55(13), p 4381–4390

    Article  CAS  Google Scholar 

  36. D.D. Zhang, Z.J. Zhan, C.H. Guo, and G.M. Tang, Preparation and Properties of Cu Matrix Reinforced with Ti2AlN Ceramic Particles, Key Eng. Mater., 2014, 602–603, p 523–526. https://doi.org/10.4028/www.scientific.net/KEM.602-603.523

    Article  CAS  Google Scholar 

  37. ISO 14577, Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method, Int. Organ. Stand., 2002

  38. W.C. Oliver and G.M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583

    Article  CAS  Google Scholar 

  39. W.C. Oliver and G.M. Pharr, Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology, J. Mater. Res., 2004, 19(1), p 3–20. https://doi.org/10.1557/jmr.2004.19.1.3

    Article  CAS  Google Scholar 

  40. J. Hay, Introduction to Instrumented Indentation Testing, Exp. Tech., 2009, 33(6), p 66–72

    Article  Google Scholar 

  41. G. Constantinides, K.S. Ravi Chandran, F.J. Ulm, and K.J. Van Vliet, Grid Indentation Analysis of Composite Microstructure and Mechanics: Principles and Validation, Mater. Sci. Eng. A, 2006, 430(1–2), p 189–202

    Article  Google Scholar 

  42. J.W. Leggoe, Determination of the Elastic Modulus of Microscale Ceramic Particles via Nanoindentation, J. Mater. Res., 2004, 19(8), p 2437–2447

    Article  CAS  Google Scholar 

  43. F.J. Ulm, M. Vandamme, C. Bobko, J. Alberto Ortega, K. Tai, and C. Ortiz, Statistical Indentation Techniques for Hydrated Nanocomposites: Concrete, Bone, and Shale, J. Am. Ceram. Soc., 2007, 90(9), p 2677–2692

    Article  CAS  Google Scholar 

  44. L. Hultman, Thermal Stability of Nitride Thin Films, Vacuum, 2000, 57(1), p 1–30. https://doi.org/10.1016/S0042-207X(00)00143-3

    Article  CAS  Google Scholar 

  45. I.M. Low, W.K. Pang, S.J. Kennedy, and R.I. Smith, High-Temperature Thermal Stability of Ti2AlN and Ti4AlN3: A Comparative Diffraction Study, J. Eur. Ceram. Soc., 2011, 31(1–2), p 159–166

    Article  CAS  Google Scholar 

  46. Y. Liu, Z. Shi, J. Wang, G. Qiao, Z. Jin, and Z. Shen, Reactive Consolidation of Layered-Ternary Ti2AlN Ceramics by Spark Plasma Sintering of a Ti/AlN Powder Mixture, J. Eur. Ceram. Soc., 2011, 31(5), p 863–868. https://doi.org/10.1016/j.jeurceramsoc.2010.11.018

    Article  CAS  Google Scholar 

  47. X. Wang, Y. Feng, G. Qian, J. Zhang, Q. Zhang, and F. Ding, A New Core-Shell Ti3AlC2/Cu Composite Powder Prepared by Electroless Plating Method, Surf. Coat. Technol., 2014, 240, p 261–268. https://doi.org/10.1016/j.surfcoat.2013.12.039

    Article  CAS  Google Scholar 

  48. O. Dezellus, B. Gardiola, J. Andrieux, and S. Lay, Experimental Evidence of Copper Insertion in a Crystallographic Structure of Ti3SiC2 MAX Phase, Scr. Mater., 2015, 104, p 17–20

    Article  CAS  Google Scholar 

  49. M. Nechiche, V. Gauthier-Brunet, V. Mauchamp, A. Joulain, T. Cabioc’h, X. Milhet, P. Chartier, and S. Dubois, Synthesis and Characterization of a New (Ti1-ε, Cuε)3(Al, Cu)C2 MAX Phase Solid Solution, J. Eur. Ceram. Soc., 2017, 37(2), p 459–466. https://doi.org/10.1016/j.jeurceramsoc.2016.09.028

    Article  CAS  Google Scholar 

  50. M.W. Barsoum and M. Radovic, Elastic and Mechanical Properties of the MAX Phases, Annu. Rev. Mater. Res., 2011, 41(1), p 195–227. https://doi.org/10.1146/annurev-matsci-062910-100448

    Article  CAS  Google Scholar 

  51. M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials, Adv. Mater., 2014, 26(7), p 992–1005

    Article  CAS  Google Scholar 

  52. M. Schloffer, F. Iqbal, H. Gabrisch, E. Schwaighofer, F.P. Schimansky, S. Mayer, A. Stark, T. Lippmann, M. Göken, F. Pyczak, and H. Clemens, Microstructure Development and Hardness of a Powder Metallurgical Multi Phase γ-TiAl Based Alloy, Intermetallics, 2012, 22, p 231–240. https://doi.org/10.1016/j.intermet.2011.11.015

    Article  CAS  Google Scholar 

  53. Y. Liu and Z. Jin, Electric Current Assisted Sintering of Continuous Functionally Graded Ti2AlN/TiN Material, Ceram. Int., 2012, 38(1), p 217–222. https://doi.org/10.1016/j.ceramint.2011.06.053

    Article  CAS  Google Scholar 

  54. S.F. Moustafa, S.A. El-Badry, A.M. Sanad, and B. Kieback, Friction and Wear of Copper-Graphite Composites Made with Cu-Coated and Uncoated Graphite Powders, Wear, 2002, 253(7–8), p 699–710

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This present research was supported by the MESRS Algerian Ministry and Directorate General for Scientific Research and Technological Development (Algeria). The authors are grateful to the ICD-LASMIS and LaMé laboratories for their characterization support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem Dehlouz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehlouz, S., Alhussein, A., Lacroix, F. et al. Self-combustion of Ti-C and Ti-Al Powder Mixture in a Nitrogen Atmosphere: Product Application as Reinforcement in Metal Matrix Composites. J. of Materi Eng and Perform 29, 1984–1994 (2020). https://doi.org/10.1007/s11665-020-04709-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04709-w

Keywords

Navigation