Skip to main content

Advertisement

Log in

A comprehensive study on radiation shielding characteristics of Tin-Silver, Manganin-R, Hastelloy-B, Hastelloy-X and Dilver-P alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, it is aimed to investigate alloys that can replace lead and its derivatives in terms of radiation shielding. A new alternative shielding material must have optimum properties that should be present in a protective material. For this purpose, this study focused on the determination of the radiation-shielding characteristics of five different alloys named Tin-Silver, Manganin-R, Hastelloy-B, Hastelloy-X and Dilver-P. The photon interaction parameters (µ, µm, λ, X1/2, σT, σe, Zeff, Neff, σeff and RPE) that give significant information about the radiation shielding capacities of the materials were calculated for the alloys in the energy range from 30 to 1333 keV. The narrow-beam transmission geometry was used to determine these parameters accurately and was adjusted such that the error rate is minimized. The present samples were irradiated with photons of nineteen different photon energies emitted from seven different radionuclides (241Am, 133Ba, 109Cd, 152Eu, 22Na, 137Cs and 60Co). Photon intensities were measured by using two different detectors (Si(Li) and NaI(Tl)) for convenient photon energy regions. Then, these parameters were also calculated theoretically using Phy-X/PSD software in order to compare the experimental and theoretical results. Furthermore, the Rinc/total, Zeq, G-P fitting coefficients (a, b, c, d and XK) and exposure build-up factors (β) for the alloys were calculated using Phy-X/PSD software at photon energy range from 0.015 to 15 MeV. In order to make a significant comparison about the shielding capacities of investigated alloys, the µm values obtained for the alloys were compared with corresponding values of Pb metal, RS 253 glass and Cupero-Nickel alloy. Consequently, the descending order of MAC values in the all surveyed energy region was obtained as Tin-Silver > Manganin-R > Hastelloy-B > Hastelloy-X > Dilver-P. In the low energy region, it was found that the all present alloys have better shielding performances than RS 253 glass and Cupero-Nickel alloy. The experimental results also revealed that the Tin-Silver alloy has 25% better shielding performance than Pb metal in the energy range of 30–88 keV. Finally, it was concluded that Manganin-R alloy could be considered as the most ideal shielding material in the entire photon energies studied along with its other superior features (high density (10.22 g cm−3), high melting point (2500–2600 °C), high tensile strength (560–1150 MPa), high modulus of elasticity (320 GPa) and high specific heat (305 J K−1 kg−1) although the Tin-Silver alloy had the highest µm values among the examined alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Matsunaga, T. Shuto, N. Kawahara, J. Suenaga, S. Inomori, H. Fujino, Gamma Knife surgery for brain metastases from colorectal cancer Clinical article. J. Neurosurg. 114, 782–789 (2011)

    Google Scholar 

  2. A. Wyszomirska, Iodine-131 for therapy of thyroid diseases. Physical and biological basis. Nucl. Med. Rev. 15, 120–123 (2012)

    Google Scholar 

  3. S. Gowda, S. Krishnaveni, T. Yashoda, T. Umesh, R. Gowda, Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds. Pramana 63, 529–541 (2004)

    ADS  Google Scholar 

  4. J. Wang, Y. Yu, X.J. Tian, Effect of gamma-ray irradiation on the germinating characteristics of wheat seed. Radiat. Phys. Chem. 81, 463–465 (2012)

    ADS  Google Scholar 

  5. I. Han, A. Un, B. Alim, Investigation of Comet Wild-2 in terms of effective atomic numbers. Adv. Space Res. 56, 2275–2287 (2015)

    ADS  Google Scholar 

  6. A. Siemiginowska, An extraordinary view of the universe the use of X-ray vision in space science. Metode Sci. Stud. J. 7, 163–171 (2017)

    Google Scholar 

  7. S.G. Gounhalli, A. Shantappa, S. Hanagodimath, Studies on mass attenuation coefficient, effective atomic numbers and electron densities of some narcotic drugs in the energy range 1 KeV–100 GeV. J. Appl. Phys. 2, 40–48 (2012)

    Google Scholar 

  8. B. Kok, H. Benli, Energy diversity and nuclear energy for sustainable development in Turkey. Renew. Energy 111, 870–877 (2017)

    Google Scholar 

  9. M. Jalali, M.R. Abdi, M.M. Davati, Prompt gamma radiation as a new tool to measure reactor power. Radiat. Phys. Chem. 91, 19–27 (2013)

    ADS  Google Scholar 

  10. C. Burger, G. Goerres, S. Schoenes, A. Buck, A.H.R. Lonn, G.K. von Schulthess, PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur. J. Nucl. Med. Mol. I(29), 922–927 (2002)

    Google Scholar 

  11. M. Terashima, K. Mizonobe, H. Date, Determination of appropriate conversion factors for calculating size-specific dose estimates based on X-ray CT scout images after miscentering correction. Radiol. Phys. Technol. 12, 283–289 (2019)

    Google Scholar 

  12. P.R. Di Stefano Vita, A. Giuseppe, Effect of gamma irradiation on aflatoxins and ochratoxin A reduction in almond samples. J. Food Res. 3, 113–118 (2014)

    Google Scholar 

  13. M. Jalili, S. Jinap, A. Noranizan, Effect of gamma radiation on reduction of mycotoxins in black pepper. Food Control 21, 1388–1393 (2010)

    Google Scholar 

  14. F. Akman, M.R. Kacal, M.I. Sayyed, H.A. Karatas, Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 782, 315–322 (2019)

    Google Scholar 

  15. B. Alim, E. Sakar, A. Baltakesmez, I. Han, M.I. Sayyed, L. Demir, Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: part I. Radiat. Phys. Chem. 166, 108455 (2020)

    Google Scholar 

  16. B. Alim, E. Sakar, I. Han, M.I. Sayyed, Evaluation the gamma, charged particle and fast neutron shielding performances of some important AISI-coded stainless steels: part II. Radiat. Phys. Chem. 166, 108454 (2020)

    Google Scholar 

  17. X.B. Jia, Y.L. Zhou, J. Zheng, Y.T. Li, H. Zou, R.S. Xie, Cerium doped barium tantalates: fabrication, characterization, and investigation of gamma radiation attenuation. J. Alloys Compd. 688, 679–684 (2016)

    Google Scholar 

  18. L. Chen, Y.Q. Tian, B.H. Sun, C.X. Cai, R.R. Ma, Z.Y. Jin, Measurement and characterization of external oil in the fried waxy maize starch granules using ATR-FTIR and XRD. Food Chem. 242, 131–138 (2018)

    Google Scholar 

  19. K. Serifaki, H. Boke, S. Yalcin, B. Ipekoglu, Characterization of materials used in the execution of historic oil paintings by XRD, SEM-EDS TGA and LIBS analysis. Mater. Charact. 60, 303–311 (2009)

    Google Scholar 

  20. C. Mueller-Dieckmann, S. Panjikar, P.A. Tucker, M.S. Weiss, On the routine use of soft X-rays in macromolecular crystallography. Part III. The optimal data-collection wavelength. Acta Crystallogr. Sect. D Struct. Biol. 61, 1263–1272 (2005)

    Google Scholar 

  21. J. Unge, C. Mueller-Dieckmann, S. Panjikar, P.A. Tucker, V.S. Lamzin, M.S. Weiss, On the routine use of soft X-rays in macromolecular crystallography. Part V. Molecular replacement and anomalous scattering. Acta Crystallogr. D 67, 729–738 (2011)

    Google Scholar 

  22. V. Levy, HVEM and X-ray-energy dispersive analysis to the study of irradiation damage in materials used for nuclear-reactors. J. Microsc. Spectrosc. Electron 6, 415 (1981)

    Google Scholar 

  23. E. Sakar, O.F. Ozpolat, B. Alim, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Google Scholar 

  24. A. Ersundu, M. Büyükyıldız, M.Ç. Ersundu, E. Şakar, M.J.P.N.E. Kurudirek, The heavy metal oxide glasses within the WO3–MoO3–TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energy 104, 280–287 (2018)

    Google Scholar 

  25. M.Ç. Ersundu, A. Ersundu, N. Gedikoğlu, E. Şakar, M. Büyükyıldız, M. Kurudirek, Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO–MoO3–TeO2 glasses. J. Non-Cryst. Solids 524, 119648 (2019)

    ADS  Google Scholar 

  26. M.D. Hassib, K.M. Kaky, A. Kumar, E. Şakar, M. Sayyed, S. Baki, M. Mahdi, Boro-silicate glasses co-doped Er+3/Yb+3 for optical amplifier and gamma radiation shielding applications. Physica B 567, 37–44 (2019)

    ADS  Google Scholar 

  27. K.M. Kaky, E. Şakar, U. Akbaba, A.E. Kasapoğlu, M. Sayyed, E. Gür, S. Baki, M. Mahdi, X-ray photoelectron spectroscopy (XPS) and gamma-ray shielding investigation of boro-silicate glasses contained alkali/alkaline modifier. Res. Phys. 14, 102438 (2019)

    Google Scholar 

  28. K.M. Kaky, M. Sayyed, A. Khammas, A. Kumar, E. Şakar, A.H. Abdalsalam, B.C. Şakar, B. Alim, M. Mhareb, Theoretical and experimental validation gamma shielding properties of B2O3–ZnO–MgO–Bi2O3 glass system. Mater. Chem. 242, 122504 (2020)

    Google Scholar 

  29. K.M. Kaky, M.I. Sayyed, E. Şakar, U. Akbaba, M.M. Taki, O. Agar, Gamma radiation shielding investigations for selected germanate glasses. J. Non-Cryst. Solids 512, 33–40 (2019)

    ADS  Google Scholar 

  30. N.S. Prabhu, V. Hegde, M. Sayyed, E. Şakar, S.D. Kamath, Technology, investigations on the physical, structural, optical and photoluminescence behavior of Er3+ ions in lithium zinc fluoroborate glass system. Infrared Phys. 98, 7–15 (2019)

    Google Scholar 

  31. M. Sayyed, H. Tekin, M.M. Taki, M. Mhareb, O. Agar, E. Şakar, K.M. Kaky, Bi2O3–B2O3–ZnO–BaO–Li2O glass system for gamma ray shielding applications. Optik 201, 163525 (2020)

    ADS  Google Scholar 

  32. K. Vighnesh, B. Ramya, S. Nimitha, A. Wagh, M. Sayyed, E. Sakar, H. Yakout, A. Dahshan, S.D. Kamath, Structural, optical, thermal, mechanical, morphological & radiation shielding parameters of Pr3+ doped ZAlFB glass systems. Opt. Mater. 99, 109512 (2019)

    Google Scholar 

  33. A. Wagh, M. Sayyed, A. Askin, Ö.F. Özpolat, E. Sakar, G. Lakshminarayana, S.D. Kamath, Influence of RE oxides (Eu3+, Sm3+, Nd3+) on gamma radiation shielding properties of lead fluoroborate glasses. Solid State Sci. 96, 105959 (2019)

    Google Scholar 

  34. F. Laariedh, O. Alatawi, M.S. Al-Buriahi, M.I. Sayyed, T.B. Badeche, TeO2–TiO2–ZnO glasses: potential use in radiation protection. Appl. Phys. A Mater. (2020). https://doi.org/10.1007/s00339-019-3122-7

    Article  Google Scholar 

  35. Y.S. Rammah, Evaluation of radiation shielding ability of boro-tellurite glasses: TeO2–B2O3–SrCl2–LiF–Bi2O3. Appl. Phys. A Mater. 125, 857 (2019)

    ADS  Google Scholar 

  36. M.S. Al-Buriahi, Y.S. Rammah, Electronic polarizability, dielectric, and gamma-ray shielding properties of some tellurite-based glasses. Appl. Phys. A Mater. 125, 678 (2019)

    ADS  Google Scholar 

  37. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, The shielding of gamma-rays by concretes produced with barite. Prog. Nucl. Energy 46, 1–11 (2005)

    Google Scholar 

  38. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates. Cem. Concr. Compos. 28, 153–157 (2006)

    Google Scholar 

  39. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Google Scholar 

  40. M.H. Kharita, S. Yousef, M. AlNassar, Review on the addition of boron compounds to radiation shielding concrete. Prog. Nucl. Energy 53, 207–211 (2011)

    Google Scholar 

  41. B. Aygün, E. Şakar, T. Korkut, M.I. Sayyed, A. Karabulut, New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochim. Acta 107, 1–6 (2019)

    Google Scholar 

  42. S. Nambiar, J.T.W. Yeow, Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 4, 5717–5726 (2012)

    Google Scholar 

  43. H.M. Soylu, F.Y. Lambrecht, O.A. Ersoz, Gamma radiation shielding efficiency of a new lead-free composite material. J. Radioanal. Nucl. Chem. 305, 529–534 (2015)

    Google Scholar 

  44. A.H. Abdalsalam, E. Şakar, K.M. Kaky, M. Mhareb, B.C. Şakar, M. Sayyed, A. Gürol, Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiat. Phys. Chem. 168, 108537 (2020)

    Google Scholar 

  45. A.H. Abdalsalam, M. Sayyed, T.A. Hussein, E. Şakar, M. Mhareb, B.C. Şakar, B. Alim, K.M. Kaky, A study of gamma attenuation property of UHMWPE/Bi2O3 nanocomposites. Chem. Phys. 523, 92–98 (2019)

    Google Scholar 

  46. B. Aygun, E. Sakar, T. Korkut, M.I. Sayyed, A. Karabulut, M.H.M. Zaid, Fabrication of Ni, Cr, W reinforced new high alloyed stainless steels for radiation shielding applications. Res. Phys. 12, 1–6 (2019)

    Google Scholar 

  47. T. Kaur, J. Sharma, T. Singh, Review on scope of metallic alloys in gamma rays shield designing. Prog. Nucl. Energy 113, 95–113 (2019)

    Google Scholar 

  48. S. Kobayashi, N. Hosoda, R. Takashima, Tungsten alloys as radiation protection materials. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Dect. Assoc. Equip. 390, 426–430 (1997)

    ADS  Google Scholar 

  49. E. Sakar, M. Buyukyildlz, B. Alim, B.C. Sakar, M. Kurudirek, Leaded brass alloys for gamma-ray shielding applications. Radiat. Phys. Chem. 159, 64–69 (2019)

    ADS  Google Scholar 

  50. V.P. Singh, M.E. Medhat, S.P. Shirmardi, Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiat. Phys. Chem. 106, 255–260 (2015)

    ADS  Google Scholar 

  51. B. Tellili, Y. Elmahroug, C. Souga, Investigation on radiation shielding parameters of cerrobend alloys. Nucl. Eng. Technol. 49, 1758–1771 (2017)

    Google Scholar 

  52. I. Han, M. Aygun, L. Demir, Y. Sahin, Determination of effective atomic numbers for 3d transition metal alloys with a new semi-empirical approach. Ann. Nucl. Energy 39, 56–61 (2012)

    Google Scholar 

  53. I. Han, L. Demir, Determination of mass attenuation coefficients, effective atomic and electron numbers for Cr, Fe and Ni alloys at different energies. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 267, 3–8 (2009)

    ADS  Google Scholar 

  54. I. Han, L. Demir, Mass attenuation coefficients, effective atomic and electron numbers of Ti and Ni alloys. Radiat. Meas. 44, 289–294 (2009)

    Google Scholar 

  55. I. Han, L. Demir, M. Sahin, Determination of mass attenuation coefficients, effective atomic and electron numbers for some natural minerals. Radiat. Phys. Chem. 78, 760–764 (2009)

    ADS  Google Scholar 

  56. M.I. Sayyed, H. Elhouichet, Variation of energy absorption and exposure buildup factors with incident photon energy and penetration depth for boro–tellurite (B2O3–TeO2) glasses. Radiat. Phys. Chem. 130, 335–342 (2017)

    ADS  Google Scholar 

  57. ANSI/ANS-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials. American Nuclear Society, La Grange Park, IL (1991)

  58. Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Validity of the geometric-progression formula in approximating gamma-ray buildup factors. Nucl. Sci. Eng. 94, 24–35 (1986)

    Google Scholar 

  59. C. Suteau, M. Chiron, An iterative method for calculating gamma-ray build-up factors in multi-layer shields. Radiat. Prot. Dosim. 116, 489–492 (2005)

    Google Scholar 

  60. A. Shimizu, Calculation of gamma-ray buildup factors up to depths of 100 mfp by the method of invariant embedding, (I)—analysis of accuracy and comparison with other data. J. Nucl. Sci. Technol. 39, 477–486 (2002)

    Google Scholar 

  61. D. Sardari, S. Saudi, M. Tajik, Evaluation of gamma ray buildup factor data in water with MCNP4C code. Ann. Nucl. Energy 38, 628–631 (2011)

    Google Scholar 

  62. Y. Harima, H. Hirayama, Detailed behavior of exposure buildup factor in stratified shields for plane-normal and point isotropic sources, including the effects of bremsstrahlung and fluorescent radiation. Nucl. Sci. Eng. 113, 367–378 (1993)

    Google Scholar 

  63. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloys Compd. 688, 111–117 (2016)

    Google Scholar 

  64. M.I. Sayyed, Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J. Alloys Compd. 695, 3191–3197 (2017)

    Google Scholar 

  65. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004)

    ADS  Google Scholar 

  66. V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials. Ann. Nucl. Energy 64, 301–310 (2014)

    Google Scholar 

  67. https://www.schott.com/d/advanced_optics/352fbb5f-4d56-49d3-bb47-256437d58f0a/1.4/schott-radiation-shielding-glass-may-2013-eng.pdf

Download references

Acknowledgements

I thanks to Vedat GÜLTEKİN for drawing the experimental geometry using the AutoCAD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bünyamin Alım.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alım, B. A comprehensive study on radiation shielding characteristics of Tin-Silver, Manganin-R, Hastelloy-B, Hastelloy-X and Dilver-P alloys. Appl. Phys. A 126, 262 (2020). https://doi.org/10.1007/s00339-020-3442-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3442-7

Keywords

Navigation