Skip to main content
Log in

Bioinspired oxidation of oximes to nitric oxide with dioxygen by a nonheme iron(II) complex

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The ability of two iron(II) complexes, [(TpPh2)FeII(benzilate)] (1) and [(TpPh2)(FeII)2(NPP)3] (2) (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate, NPP-H = α-isonitrosopropiophenone), of a monoanionic facial N3 ligand in the O2-dependent oxidation of oximes is reported. The mononuclear complex 1 reacts with dioxygen to decarboxylate the iron-coordinated benzilate. The oximate-bridged dinuclear complex (2), which contains a high-spin (TpPh2)FeII unit and a low-spin iron(II)–oximate unit, activates dioxygen at the high-spin iron(II) center. Both the complexes exhibit the oxidative transformation of oximes to the corresponding carbonyl compounds with the incorporation of one oxygen atom from dioxygen. In the oxidation process, the oxime units are converted to nitric oxide (NO) or nitroxyl (HNO). The iron(II)–benzilate complex (1) reacts with oximes to afford HNO, whereas the iron(II)–oximate complex (2) generates NO. The results described here suggest that the oxidative transformation of oximes to NO/HNO follows different pathways depending upon the nature of co-ligand/reductant.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Chart 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 3

Similar content being viewed by others

References

  1. Dangl J (1998) Nature 394(525):527

    Google Scholar 

  2. Murad F (1999) Angew Chem Int Ed 38:1856–1868

    Article  CAS  Google Scholar 

  3. Ignarro LJ (1999) Angew Chem Int Ed 38:1882–1892

    Article  CAS  Google Scholar 

  4. Hansen MB, Dresner LS, Wait RB (1998) Physiol Res 47:307–327

    CAS  PubMed  Google Scholar 

  5. Agnihotri N, Lopez-Garcia JC, Hawkins RD, Arancio O (1998) Histol Histopathol 13:1155–1162

    CAS  PubMed  Google Scholar 

  6. Albina JE, Reichner JS (1998) Cancer Metastasis Rev 17:39–53

    Article  CAS  PubMed  Google Scholar 

  7. Brown GC (1999) Biochim Biophys Acta Bioenerg 1411:351–369

    Article  CAS  Google Scholar 

  8. Terasaka E, Yamada K, Wang P-H, Hosokawa K, Yamagiwa R, Matsumoto K, Ishii S, Mori T, Yagi K, Sawai H, Arai H, Sugimoto H, Sugita Y, Shiro Y, Tosha T (2017) Proc Natl Acad Sci USA 114:9888–9893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rask-Madsen C, King GL (2007) Nat Clin Pract Endocrinol Metab 3:46–56

    Article  CAS  PubMed  Google Scholar 

  10. Shah NS, Billiar TR (1998) Environ Health Perspect Suppl 106:1139–1143

    CAS  Google Scholar 

  11. Suzuki A, Kudoh S, Mori K, Takahashi N, Suzuki T (2004) Int J Urol 11:837–844

    Article  CAS  PubMed  Google Scholar 

  12. Hammerman C, Kaplan M (1998) Clin Perinatol 25:757–777

    Article  CAS  PubMed  Google Scholar 

  13. Cosentino F, Luscher TF (1998) J Cardiovasc Pharmacol 32:S54–S61

    CAS  PubMed  Google Scholar 

  14. Paolocci N, Jackson MI, Lopez BE, Miranda K, Tocchetti CG, Wink DA, Hobbs AJ, Fukuto JM (2007) Pharmacol Ther 113:442–458

    Article  CAS  PubMed  Google Scholar 

  15. Irvine JC, Ritchie RH, Favaloro JL, Andrews KL, Widdop RE, Kemp-Harper BK (2008) Trends Pharmacol Sci 29:601–608

    Article  CAS  PubMed  Google Scholar 

  16. Miao Z, King SB (2016) Nitric Oxide 57:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Daff S (2010) Nitric Oxide 23:1–11

    Article  CAS  PubMed  Google Scholar 

  18. Foerstermann U, Sessa WC (2012) Eur Heart J 33:829–837

    Article  CAS  Google Scholar 

  19. Knowles RG, Moncada S (1994) Biochem J 298:249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Agapie T, Suseno S, Woodward JJ, Stoll S, Britt RD, Marletta MA (2009) Proc Natl Acad Sci USA 106:16221–16226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Nature 351:714–718

    Article  CAS  PubMed  Google Scholar 

  22. Crane BR, Arvai AS, Ghosh DK, Wu C, Getzoff ED, Stuehr DJ, Tainer JA (1998) Science 279:2121–2126

    Article  CAS  PubMed  Google Scholar 

  23. Boggs S, Huang L, Stuehr DJ (2000) Biochemistry 39:2332–2339

    Article  CAS  PubMed  Google Scholar 

  24. Stuehr DJ, Kwon NS, Nathan CF, Griffith OW, Feldman PL, Wiseman J (1991) J Biol Chem 266:6259–6263

    CAS  PubMed  Google Scholar 

  25. Campos KL, Giovanelli J, Kaufman S (1995) J Biol Chem 270:1721–1728

    Article  CAS  PubMed  Google Scholar 

  26. Leone AM, Palmer RMJ, Knowles RG, Francis PL, Ashton DS, Moncada S (1991) J Biol Chem 266:23790–23795

    CAS  PubMed  Google Scholar 

  27. Korth HG, Sustmann R, Thater C, Butler AR, Ingold KU (1994) J Biol Chem 269:17776–17779

    CAS  PubMed  Google Scholar 

  28. Bec N, Gorren ACF, Voelker C, Mayer B, Lange R (1998) J Biol Chem 273:13502–13508

    Article  CAS  PubMed  Google Scholar 

  29. Wang CCY, Ho DM, Groves JT (1999) J Am Chem Soc 121:12094–12103

    Article  CAS  Google Scholar 

  30. Marletta MA (1993) J Biol Chem 268:12231–12234

    CAS  PubMed  Google Scholar 

  31. Woodward JJ, Chang MM, Martin NI, Marletta MA (2009) J Am Chem Soc 131:297–305

    Article  CAS  PubMed  Google Scholar 

  32. Groves JT, Wang CCY (1997) FASEB J 11:A769–A1458

    Google Scholar 

  33. Groves JT, Wang CCY (2000) Curr Opin Chem Biol 4:687–695

    Article  CAS  PubMed  Google Scholar 

  34. Nishinaga A, Yamazaki S, Miwa T, Matsuura T (1991) React Kinet Catal Lett 43:273–276

    Article  CAS  Google Scholar 

  35. Sha X, Isbell TS, Patel RP, Day CS, King SB (2006) J Am Chem Soc 128:9687–9692

    Article  CAS  PubMed  Google Scholar 

  36. Paria S, Que L, Paine TK (2011) Angew Chem Int Ed 50:11129–11132

    Article  CAS  Google Scholar 

  37. Paria S, Chatterjee S, Paine TK (2014) Inorg Chem 53:2810–2821

    Article  CAS  PubMed  Google Scholar 

  38. Chatterjee S, Paine TK (2015) Angew Chem Int Ed 54:9338–9342

    Article  CAS  Google Scholar 

  39. Chatterjee S, Paine TK (2016) Angew Chem Int Ed 55:7717–7722

    Article  CAS  Google Scholar 

  40. Kitajima N, Fujisawa K, Fujimoto C, Morooka Y, Hashimoto S, Kitagawa T, Toriumi K, Tatsumi K, Nakamura A (1992) J Am Chem Soc 114:1277–1291

    Article  CAS  Google Scholar 

  41. Feelisch M, Schoenafinger K, Noack E (1992) Biochem Pharmacol 44:1149–1157

    Article  CAS  PubMed  Google Scholar 

  42. Miranda KM, Espey MG, Yamada K, Krishna M, Ludwick N, Kim S, Jourd’heuil D, Grisham MB, Feelisch M, Fukuto JM, Wink DA (2001) J Biol Chem 276:1720–1727

    Article  CAS  PubMed  Google Scholar 

  43. Reisz JA, Klorig EB, Wright MW, King SB (2009) Org Lett 11:2719–2721

    Article  CAS  PubMed  Google Scholar 

  44. Dong Y, Fujii H, Hendrich MP, Leising RA, Pan G, Randall CR, Wilkinson EC, Zang Y, Que L Jr, Fox BG, Kauffmann K, Münck E (1995) J Am Chem Soc 117:2778–2792

    Article  CAS  Google Scholar 

  45. Van der Sluis P, Spek AL (1990) Acta Crystallogr Sect A Found Crystallogr A46:194–201

    Article  Google Scholar 

  46. Gerasimchuk NN, Domasevich KV (1992) Zhurnal Neorganicheskoi Khimii 37:2245–2252

    CAS  Google Scholar 

  47. Mehn MP, Fujisawa K, Hegg EL, Que L Jr (2003) J Am Chem Soc 125:7828–7842

    Article  CAS  PubMed  Google Scholar 

  48. Paine TK, Zheng H, Que L Jr (2005) Inorg Chem 44:474–476

    Article  CAS  PubMed  Google Scholar 

  49. Rhine MA, Rodrigues AV, Urbauer RJB, Urbauer JL, Stemmler TL, Harrop TC (2014) J Am Chem Soc 136:12560–12563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bhattacharya S, Rahaman R, Chatterjee S, Paine TK (2017) Chem Eur J 23:3815–3818

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TKP acknowledges Science and Engineering Research Board (SERB), India, for the financial support (Project: EMR/2014/000972). SB thanks the Department of Science and Technology (DST), Govt. of India, for INSPIRE fellowship, and TRL thanks the Council of Scientific and Industrial Research (CSIR), India, for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kanti Paine.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 824 kb)

775_2019_1726_MOESM2_ESM.pdf

Supplementary material 2 (PDF 199 kb) Spectral data and crystallographic data in cif file format. CCDC 1906732 (for 2) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S., Lakshman, T.R., Sutradhar, S. et al. Bioinspired oxidation of oximes to nitric oxide with dioxygen by a nonheme iron(II) complex. J Biol Inorg Chem 25, 3–11 (2020). https://doi.org/10.1007/s00775-019-01726-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-019-01726-6

Keywords

Navigation