Issue 9, 2020

Auto-affitech: an automated ligand binding affinity evaluation platform using digital microfluidics with a bidirectional magnetic separation method

Abstract

The dissociation constant (Kd) is a crucial parameter for characterizing binding affinity in molecular recognition, including antigen–antibody, DNA–protein, and receptor–ligand interactions. However, conventional methods for Kd characterization usually involve a multi-step process and time-consuming operations for incubation, washing, and detection, thus causing problems, such as time delays, microbead loss, degradation of sensitive molecules, and personal errors. Here we demonstrate an automated ligand binding affinity evaluation platform (Auto-affitech) using digital microfluidics (DMF), with individual droplets at the microliter level, programmed to rapidly perform the incubation and separation of target-beads and binding ligands. Because the loss of the beads influences the detection results, we propose a new strategy for magnetic bead separation using DMF, termed the bidirectional separation method. By splitting one droplet into two asymmetric droplets, high bead retention efficiency (89.57% ± 0.05%) and high washing efficiency (99.59% ± 0.17%, with four washings) were obtained. We demonstrate the determination of Kd of an aptamer–protein system (EpCAM and its corresponding aptamer SYL3C) and an antigen–antibody system (H5N1 antigen and antibody), proving the capability and universality of Auto-affitech in various receptor–ligand systems. Integrating all the sample processing procedures, the Auto-affitech not only saves manual labor and minimizes personal errors, but also conserves samples and shortens analysis time. Overall, this platform successfully demonstrates to be an automated approach for dissociation constant evaluation and exhibits great potential for highly efficient screening of ligands.

Graphical abstract: Auto-affitech: an automated ligand binding affinity evaluation platform using digital microfluidics with a bidirectional magnetic separation method

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2020
Accepted
06 Mar 2020
First published
09 Mar 2020

Lab Chip, 2020,20, 1577-1585

Auto-affitech: an automated ligand binding affinity evaluation platform using digital microfluidics with a bidirectional magnetic separation method

J. Guo, L. Lin, K. Zhao, Y. Song, M. Huang, Z. Zhu, L. Zhou and C. Yang, Lab Chip, 2020, 20, 1577 DOI: 10.1039/D0LC00024H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements