Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of a pigment cluster catalysing fast photoprotective quenching response in CP29

Abstract

Non-photochemical quenching is the photoprotective heat dissipation of chlorophyll-excited states. In higher plants, two quenching sites are located in trimeric LHCII and monomeric CP29 proteins. Catalysis of dissipative reactions requires interactions between chromophores, either carotenoid, chlorophyll or both. We identified CP29 protein domains involved in quenching by complementing an Arabidopsis deletion mutant with sequences deleted in pigment-binding or pH-sensitive sites. Acidic residues exposed to the thylakoid lumen were found not essential for activation of thermal dissipation in vivo. Chlorophylls a603 (a5) and a616 were identified as components of the catalytic pigment cluster responsible for quenching reaction(s), in addition to xanthophyll L2 and chlorophyll a609 (b5). We suggest that a conformational change induced by acidification in PsbS is transduced to CP29, thus bringing chlorophylls a603, a609 and a616 into close contact and activating a dissipative channel. Consistently, mutations on putative protonatable residues, exposed to the thylakoid lumen and previously suggested to regulate xanthophyll exchange at binding site L2, did not affect quenching efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CP29 content and NPQ kinetics of lines complemented with WT Lhcb4.1 gene from A. thaliana.
Fig. 2: Characterization of Arabidopsis lines expressing CP29 isoforms mutated in putative protonatable sites.
Fig. 3: Characterization of Arabidopsis lines expressing WT and mutant CP29 proteins.
Fig. 4: Organization of thylakoid pigment–protein complexes.
Fig. 5: Spectroscopic analysis of WT and mutant CP29 purified holoproteins.
Fig. 6: Fluorescence emission at 77 K of CP29 WT and mutant a603/a5.
Fig. 7: Correlation between NPQ amplitude and CP29 content in plants expressing either WT or mutant CP29.

Similar content being viewed by others

Data availability

Sequence data from this article can be found in the Arabidopsis Genome Initiative or GenBank/EMBL databases under accession nos. At5g01530 (Lhcb4.1) and At3g08940 (Lhcb4.2). The knockout lines used in the work were obtained from the Nottingham Arabidopsis Stock Centre under stock nos. N376476 (koLhcb4.1) and N877954 (koLhcb4.2).

References

  1. Nelson, N. & Ben Shem, A. The complex architecture of oxygenic photosynthesis. Nature 5, 1–12 (2004).

    Google Scholar 

  2. Van Amerongen, H. & Croce, R. Light-harvesting in Photosystem II. Photosynth. Res. 116, 251–263 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krieger-Liszkay, A. Singlet oxygen production in photosynthesis. J. Exp. Bot. 56, 337–346 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Ruban, A. V., Johnson, M. P. & Duffy, C. D. The photoprotective molecular switch in the Photosystem II antenna. Biochim. Biophys. Acta 1817, 167–181 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Li, X. P. et al. Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. J. Biol. Chem. 279, 22866–22874 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Dominici, P. et al. Biochemical properties of the PsbS subunit of photosystem II either purified from chloroplast or recombinant. J. Biol. Chem. 277, 22750–22758 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Wei, X. et al. Structure of spinach photosystem II-LHCII supercomplex at 3.2 A resolution. Nature 534, 69–74 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Betterle, N. et al. Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J. Biol. Chem. 284, 15255–15266 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dall’Osto, L. et al. Two mechanisms for dissipation of excess light in monomeric and trimeric light-harvesting complexes. Nat. Plants 3, 17033 (2017).

    Article  PubMed  Google Scholar 

  10. de Bianchi, S., Dall’Osto, L., Tognon, G., Morosinotto, T. & Bassi, R. Minor antenna proteins CP24 and CP26 affect the interactions between Photosystem II subunits and the electron transport rate in grana membranes of Arabidopsis. Plant Cell 20, 1012–1028 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  11. de Bianchi, S. et al. Arabidopsis mutants deleted in the light-harvesting protein Lhcb4 have a disrupted Photosystem II macrostructure and are defective in photoprotection. Plant Cell 23, 2659–2679 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pan, X. et al. Structural insights into energy regulation of light-harvesting complex CP29 from spinach. Nat. Struct. Mol. Biol. 18, 309–315 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Su, X. et al. Structure and assembly mechanism of plant C2S2M2-type PSII–LHCII supercomplex. Science 357, 815–820 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Ballottari, M., Dall’Osto, L., Morosinotto, T. & Bassi, R. Contrasting behavior of higher plant Photosystem I and II antenna systems during acclimation. J. Biol. Chem. 282, 8947–8958 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Walters, R. G., Ruban, A. V. & Horton, P. Identification of proton-active residues in a higher plant light- harvesting complex. Proc. Natl Acad. Sci. USA 93, 14204–14209 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pesaresi, P., Sandona, D., Giuffra, E. & Bassi, R. A single point mutation (E166Q) prevents dicyclohexylcarbodiimide binding to the Photosystem II subunit CP29. FEBS Lett. 402, 151–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Bassi, R., Croce, R., Cugini, D. & Sandona, D. Mutational analysis of a higher plant antenna protein provides identification of chromophores bound into multiple sites. Proc. Natl Acad. Sci. USA 96, 10056–10061 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caffarri, S., Kouril, R., Kereiche, S., Boekema, E. J. & Croce, R. Functional architecture of higher plant Photosystem II supercomplexes. EMBO J. 28, 3052–3063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Croce, R., Cinque, G., Holzwarth, A. R. & Bassi, R. The soret absorption properties of carotenoids and chlorophylls in antenna complexes of higher plants. Photosynth. Res. 64, 221–231 (2000).

  20. Cinque, G., Croce, R. & Bassi, R. Absorption spectra of chlorophyll a and b in Lhcb protein environment. Photosynth. Res. 64, 233–242 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Pietrzykowska, M. et al. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell 26, 3646–3660 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fan, M. et al. Crystal structures of the PsbS protein essential for photoprotection in plants. Nat. Struct. Mol. Biol. 22, 729–735 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Sacharz, J., Giovagnetti, V., Ungerer, P., Mastroianni, G. & Ruban, A. V. The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat. Plants 3, 16225 (2017).

    Article  PubMed  Google Scholar 

  24. Pan, X., Liu, Z., Li, M. & Chang, W. Architecture and function of plant light-harvesting complexes II. Curr. Opin. Struct. Biol. 23, 515–525 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Ruban, A. V. et al. Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450, 575–578 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Duffy, C. D., Valkunas, L. & Ruban, A. V. Quantum mechanical calculations of xanthophyll–chlorophyll electronic coupling in the light-harvesting antenna of Photosystem II of higher plants. J. Phys. Chem. B 117, 7605–7614 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Ahn, T. K. et al. Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320, 794–797 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Dall’Osto, L., Cazzaniga, S., North, H., Marion-Poll, A. & Bassi, R. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photoxidative stress. Plant Cell 19, 1048–1064 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dreuw, A., Fleming, G. R. & Head-Gordon, M. Chlorophyll fluorescence quenching by xanthophylls. Phys. Chem. Chem. Phys. 5, 3247–3256 (2003).

    Article  CAS  Google Scholar 

  30. Niyogi, K. K., Grossman, A. R. & Björkman, O. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10, 1121–1134 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Avenson, T. J. et al. Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J. Biol. Chem. 283, 3550–3558 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Holt, N. E. et al. Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. & Chua, N. H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1, 641–646 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Casazza, A. P., Tarantino, D. & Soave, C. Preparation and functional characterization of thylakoids from Arabidopsis thaliana. Photosynth. Res. 68, 175–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Gilmore, A. M. & Yamamoto, H. Y. Zeaxanthin formation and energy-dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol. 96, 635–643 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schägger, H. & von Jagow, G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  PubMed  Google Scholar 

  37. Havaux, M., Dall’Osto, L., Cuine, S., Giuliano, G. & Bassi, R. The effect of zeaxanthin as the only xanthophyll on the structure and function of the photosynthetic apparatus in Arabidopsis thaliana. J. Biol. Chem. 279, 13878–13888 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Baker, N. R. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the HuntingLight grant from the University of Verona (to L.D.) and by EEC grant SE2B (no. 675006–SE2B) to R.B. We thank A. Zamboni (University of Verona) for help with statistical analysis, and S. Capaldi and S. Cazzaniga (University of Verona) for valuable advice and initial help with CP29 purification. We thank Z. Liu (Institute of Biophysics, Chinese Academy of Sciences, Beijing) for helpful discussions on CP29 structure.

Author information

Authors and Affiliations

Authors

Contributions

R.B. and L.D. conceived the work and designed the experiments. M.B. carried out the construction of mutants and performed their physiological characterization, together with L.D., Z.G. and R.C. Z.G. and R.C. analysed fluorescence quenching kinetics and biochemically characterized mutant lines. All authors contributed to writing the manuscript, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Luca Dall’Osto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Zhenfeng Liu and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Tables 1–5, methods and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guardini, Z., Bressan, M., Caferri, R. et al. Identification of a pigment cluster catalysing fast photoprotective quenching response in CP29. Nat. Plants 6, 303–313 (2020). https://doi.org/10.1038/s41477-020-0612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-0612-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing