Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Animal Models

Energy partitioning between fat and bone mass is controlled via a hypothalamic leptin/NPY relay

Abstract

Background/objectives

Maintaining energy balance is important to ensure a healthy organism. However, energy partitioning, coordinating the distribution of sufficient energy to different organs and tissues is equally important, but the control of this process is largely unknown. In obesity, an increase in fat mass necessitates the production of additional bone mass to cope with the increase in bodyweight and processes need to be in place to communicate this new weight bearing demand. Here, we investigate the interaction between leptin and NPY, two factors critically involved in the regulation of both energy metabolism and bone mass, in this process.

Methods

We assessed the co-localization of leptin receptors on NPY neurons using RNAScope followed by a systematic examination of body composition and energy metabolism profiling in male and female mice lacking leptin receptors specifically in NPY neurons (Leprlox/lox;NPYCre/+). The effect of short-term switching between chow and high-fat diet was also examined in these mice.

Results

We uncovered that leptin receptor expression is greater on a subpopulation of NPY neurons in the arcuate that do not express AgRP. We further show that Leprlox/lox;NPYCre/+ mice exhibit significantly increased adiposity while bone mass is diminished. These body composition changes occur in the absence of alterations in food intake or energy expenditure, demonstrating a prominent role for leptin signaling in NPY neurons in the control of energy partitioning. Importantly however, when fed a high-fat diet, these mice display a switch in energy partitioning whereby they exhibit a significantly enhanced ability to increase their bone mass to match the increased bodyweight caused by higher caloric intake concurrent with attenuated adiposity.

Conclusions

Taken together, these results demonstrate that leptin signaling in NPY neurons is critical for coordinating energy partitioning between fat and bone mass especially during situations of changes in energy balance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lepr expression in the mouse brain and generation of Leprlox/lox;NPYCre/+ mice.
Fig. 2: Lack of leptin signaling in NPY neurons results in increased fat mass.
Fig. 3: Energy homeostasis parameters under chow conditions.
Fig. 4: Leptin signaling in NPY neurons controls bone mass.
Fig. 5: Lack of leptin signaling in NPY neurons leads to an attenuation of adiposity under HFD conditions.
Fig. 6: Lack of leptin signaling in NPY neurons leads to increased bone mass under HFD conditions.
Fig. 7: Leptin signaling on NPY neurons regulates energy partitioning and glucose homeostasis.

Similar content being viewed by others

References

  1. Compston J. Obesity and fractures in postmenopausal women. Curr Opin Rheumatol. 2015;27:414–9.

    PubMed  Google Scholar 

  2. Compston JE, Flahive J, Hooven FH, Anderson FA Jr., Adachi JD, Boonen S, et al. Obesity, health-care utilization, and health-related quality of life after fracture in postmenopausal women: Global Longitudinal Study of Osteoporosis in Women (GLOW). Calcif Tissue Int. 2014;94:223–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Johansson H, Kanis JA, Oden A, McCloskey E, Chapurlat RD, Christiansen C, et al. A meta-analysis of the association of fracture risk and body mass index in women. J Bone Miner Res. 2014;29:223–33.

    PubMed  Google Scholar 

  4. Ho-Pham LT, Nguyen UD, Nguyen TV. Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab. 2014;99:30–8.

    CAS  PubMed  Google Scholar 

  5. Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab. 2015;26:125–35.

    CAS  PubMed  Google Scholar 

  6. Zhang L, Hernandez-Sanchez D, Herzog H. Regulation of feeding-related behaviors by arcuate neuropeptide Y neurons. Endocrinology. 2019;160:1411–20.

    CAS  PubMed  Google Scholar 

  7. Boissonneault GA, Hornshuh MJ, Simons JW, Romsos DR, Leveille GA. Oxygen consumption and body fat content of young lean and obese (OB/OB) mice. Proc Soc Exp Biol Med. 1978;157:402–6.

    CAS  PubMed  Google Scholar 

  8. Osborn O, Sanchez-Alavez M, Brownell SE, Ross B, Klaus J, Dubins J, et al. Metabolic characterization of a mouse deficient in all known leptin receptor isoforms. Cell Mol Neurobiol. 2010;30:23–33.

    CAS  PubMed  Google Scholar 

  9. Mizuno TM, Kleopoulos SP, Bergen HT, Roberts JL, Priest CA, Mobbs CV. Hypothalamic pro-opiomelanocortin mRNA is reduced by fasting and [corrected] in ob/ob and db/db mice, but is stimulated by leptin. Diabetes. 1998;47:294–7.

    CAS  PubMed  Google Scholar 

  10. Stephens TW, Basinski M, Bristow PK, Bue-Valleskey JM, Burgett SG, Craft L, et al. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature. 1995;377:530–2.

    CAS  PubMed  Google Scholar 

  11. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science. 1995;269:540–3.

    CAS  PubMed  Google Scholar 

  12. Schwartz MW, Baskin DG, Bukowski TR, Kuijper JL, Foster D, Lasser G, et al. Specificity of leptin action on elevated blood glucose levels and hypothalamic neuropeptide Y gene expression in ob/ob mice. Diabetes. 1996;45:531–5.

    CAS  PubMed  Google Scholar 

  13. Upadhyay J, Farr OM, Mantzoros CS. The role of leptin in regulating bone metabolism. Metabolism. 2015;64:105–13.

    CAS  PubMed  Google Scholar 

  14. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 2000;100:197–207.

    CAS  PubMed  Google Scholar 

  15. Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000;92:73–8.

    CAS  PubMed  Google Scholar 

  16. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–17.

    CAS  PubMed  Google Scholar 

  17. Wong IP, Nguyen AD, Khor EC, Enriquez RF, Eisman JA, Sainsbury A, et al. Neuropeptide Y is a critical modulator of leptin’s regulation of cortical bone. J Bone Miner Res. 2013;28:886–98.

    CAS  PubMed  Google Scholar 

  18. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V, et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron. 2004;42:983–91.

    CAS  PubMed  Google Scholar 

  19. van de Wall E, Leshan R, Xu AW, Balthasar N, Coppari R, Liu SM, et al. Collective and individual functions of leptin receptor modulated neurons controlling metabolism and ingestion. Endocrinology. 2008;149:1773–85.

    PubMed  Google Scholar 

  20. Kim JG, Sun BH, Dietrich MO, Koch M, Yao GQ, Diano S, et al. AgRP neurons regulate bone mass. Cell Rep. 2015;13:8–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science. 2005;310:683–5.

    CAS  PubMed  Google Scholar 

  22. Liu J, Krautzberger AM, Sui SH, Hofmann OM, Chen Y, Baetscher M, et al. Cell-specific translational profiling in acute kidney injury. J Clin Invest. 2014;124:1242–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Qi Y, Purtell L, Fu M, Lee NJ, Aepler J, Zhang L, et al. Snord116 is critical in the regulation of food intake and body weight. Sci Rep. 2016;6:18614.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chehab FF, Lim ME, Lu R. Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet. 1996;12:318–20.

    CAS  PubMed  Google Scholar 

  25. Mounzih K, Lu R, Chehab FF. Leptin treatment rescues the sterility of genetically obese ob/ob males. Endocrinology. 1997;138:1190–3.

    CAS  PubMed  Google Scholar 

  26. Zhang Y, Hu M, Ma H, Qu J, Wang Y, Hou L, et al. The impairment of reproduction in db/db mice is not mediated by intraovarian defective leptin signaling. Fertil Steril. 2012;97:1183–91.

    CAS  PubMed  Google Scholar 

  27. Felson DT, Zhang Y, Hannan MT, Anderson JJ. Effects of weight and body mass index on bone mineral density in men and women: the Framingham study. J Bone Miner Res. 1993;8:567–73.

    CAS  PubMed  Google Scholar 

  28. Baldock PA, Lee NJ, Driessler F, Lin S, Allison S, Stehrer B, et al. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS ONE. 2009;4:e8415.

    PubMed  PubMed Central  Google Scholar 

  29. Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ. Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis. 2002;33:77–80.

    CAS  PubMed  Google Scholar 

  30. Roseberry AG, Liu H, Jackson AC, Cai X, Friedman JM. Neuropeptide Y-mediated inhibition of proopiomelanocortin neurons in the arcuate nucleus shows enhanced desensitization in ob/ob mice. Neuron. 2004;41:711–22.

    CAS  PubMed  Google Scholar 

  31. Jackson RS, Creemers JW, Ohagi S, Raffin-Sanson ML, Sanders L, Montague CT, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet. 1997;16:303–6.

    CAS  PubMed  Google Scholar 

  32. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med. 1999;5:1066–70.

    CAS  PubMed  Google Scholar 

  33. Forbes S, Bui S, Robinson BR, Hochgeschwender U, Brennan MB. Integrated control of appetite and fat metabolism by the leptin-proopiomelanocortin pathway. Proc Natl Acad Sci USA. 2001;98:4233–7.

    CAS  PubMed  Google Scholar 

  34. Shin AC, Filatova N, Lindtner C, Chi T, Degann S, Oberlin D, et al. Insulin receptor signaling in POMC, but not AgRP, neurons controls adipose tissue insulin action. Diabetes. 2017;66:1560–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nogueiras R, Wiedmer P, Perez-Tilve D, Veyrat-Durebex C, Keogh JM, Sutton GM, et al. The central melanocortin system directly controls peripheral lipid metabolism. J Clin Invest. 2007;117:3475–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brito MN, Brito NA, Baro DJ, Song CK, Bartness TJ. Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology. 2007;148:5339–47.

    CAS  PubMed  Google Scholar 

  37. Chhabra KH, Adams JM, Fagel B, Lam DD, Qi N, Rubinstein M, et al. Hypothalamic POMC deficiency improves glucose tolerance despite insulin resistance by increasing glycosuria. Diabetes. 2016;65:660–72.

    CAS  PubMed  Google Scholar 

  38. Ohlsson C, Engdahl C, Borjesson AE, Windahl SH, Studer E, Westberg L, et al. Estrogen receptor-alpha expression in neuronal cells affects bone mass. Proc Natl Acad Sci USA. 2012;109:983–8.

    CAS  PubMed  Google Scholar 

  39. Bennett PA, Lindell K, Wilson C, Carlsson LM, Carlsson B, Robinson IC. Cyclical variations in the abundance of leptin receptors, but not in circulating leptin, correlate with NPY expression during the oestrous cycle. Neuroendocrinology. 1999;69:417–23.

    CAS  PubMed  Google Scholar 

  40. Nohara K, Zhang Y, Waraich RS, Laque A, Tiano JP, Tong J, et al. Early-life exposure to testosterone programs the hypothalamic melanocortin system. Endocrinology. 2011;152:1661–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang C, He Y, Xu P, Yang Y, Saito K, Xia Y, et al. TAp63 contributes to sexual dimorphism in POMC neuron functions and energy homeostasis. Nat Commun. 2018;9:1544.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Baldock PA, Sainsbury A, Allison S, Lin EJ, Couzens M, Boey D, et al. Hypothalamic control of bone formation: distinct actions of leptin and y2 receptor pathways. J Bone Miner Res. 2005;20:1851–7.

    CAS  PubMed  Google Scholar 

  43. Motyl KJ, Rosen CJ. Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie. 2012;94:2089–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Baldock PA, Allison S, McDonald MM, Sainsbury A, Enriquez RF, Little DG, et al. Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res. 2006;21:1600–7.

    CAS  PubMed  Google Scholar 

  45. Bartelt A, Koehne T, Todter K, Reimer R, Muller B, Behler-Janbeck F, et al. Quantification of bone fatty acid metabolism and its regulation by adipocyte lipoprotein lipase. Int J Mol Sci. 2017;18:1264.

  46. Frey JL, Li Z, Ellis JM, Zhang Q, Farber CR, Aja S, et al. Wnt-Lrp5 signaling regulates fatty acid metabolism in the osteoblast. Mol Cell Biol. 2015;35:1979–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim SP, Li Z, Zoch ML, Frey JL, Bowman CE, Kushwaha P, et al. Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner. JCI Insight. 2017;2:e92704.

  48. Niemeier A, Niedzielska D, Secer R, Schilling A, Merkel M, Enrich C, et al. Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast function. Bone. 2008;43:230–7.

    CAS  PubMed  Google Scholar 

  49. Adamek G, Felix R, Guenther HL, Fleisch H. Fatty acid oxidation in bone tissue and bone cells in culture. Characterization and hormonal influences. Biochem J. 1987;248:129–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sornay-Rendu E, Boutroy S, Vilayphiou N, Claustrat B, Chapurlat RD. In obese postmenopausal women, bone microarchitecture and strength are not commensurate to greater body weight: the Os des Femmes de Lyon (OFELY) study. J Bone Miner Res. 2013;28:1679–87.

    CAS  PubMed  Google Scholar 

  51. Shapses SA, Pop LC, Wang Y. Obesity is a concern for bone health with aging. Nutr Res. 2017;39:1–13.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council (NHMRC) of Australia (Grant ID 1156371). We thank the staff of the Garvan Institute Biological Testing Facility and staff of the Australian BioResources for taking care of our test mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Herzog.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, N.J., Qi, Y., Enriquez, R.F. et al. Energy partitioning between fat and bone mass is controlled via a hypothalamic leptin/NPY relay. Int J Obes 44, 2149–2164 (2020). https://doi.org/10.1038/s41366-020-0550-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-020-0550-6

Search

Quick links