Skip to main content
Log in

A nucleoside diphosphate kinase gene OsNDPK4 is involved in root development and defense responses in rice (Oryza sativa L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Dysfunctional mutation of OsNDPK4 resulted in severe defects in root development of rice. However, the resistance of Osndpk4 against bacterial blight was significantly enhanced.

Abstract

Nucleoside diphosphate kinases (NDPKs) are an evolutionarily conserved family of important enzymes balancing the energy currency nucleoside triphosphates by catalyzing the transfer of their phosphate groups. The aim of this study was to elucidate the function of OsNDPK4 in rice. A dysfunctional rice mutant was employed to characterize the function of OsNDPK4. Its expression and subcellular localization were examined. The transcriptomic change in roots of Osndpk4 was analyzed by RNA-seq. The rice mutant Osndpk4 showed severe defects in root development from the early seedling stage. Further analysis revealed that meristematic activity and cell elongation were significantly inhibited in primary roots of Osndpk4, together with reduced accumulation of reactive oxygen species (ROS). Map-based cloning identified that the mutation occurred in the OsNDPK4 gene. OsNDPK4 was found to be expressed in a variety of tissues throughout the plant and OsNDPK4 was located in the cytosol. Osndpk4 showed enhanced resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo) and up-regulation of pathogenesis-related marker genes. In addition, transcriptomic analysis showed that OsNDPK4 was significantly associated with a number of biological processes, including translation, protein modification, metabolism, biotic stress response, etc. Detailed analysis revealed that the dysfunction of OsNDPK4 might reorchestrate energy homeostasis and hormone metabolism and signalling, resulting in repression of translation, DNA replication and cell cycle progression, and priming of biotic stress defense. Our results demonstrate that OsNDPK4 plays important roles in energy homeostasis, development process, and defense responses in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DEGs:

Differentially expressed genes

GUS:

β-Glucuronidase

KEGG:

Kyoto Encyclopedia of Genes and Genomes

NDPK:

Nucleoside diphosphate kinase

PR:

Pathogenesis related

ROS:

Reactive oxygen species

WT:

Wild type

Xoo :

Xanthomonas oryzae Pv. oryzae

References

  • Ahsan N, Lee DG, Lee KW, Alam I, Lee SH, Bahk JD, Lee BH (2008) Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach. Plant Physiol Biochem 46(12):1062–1070

    CAS  PubMed  Google Scholar 

  • Anders S, Pyl PT, Huber W (2015) HTSeq—a python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169

    CAS  PubMed  Google Scholar 

  • Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K (2017) Evolution of hormone signaling networks in plant defense. Annu Rev Phytopathol 55(1):401–425

    CAS  PubMed  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    CAS  PubMed  Google Scholar 

  • Boissan M, Dabernat S, Peuchant E, Schlattner U, Lascu I, Lacombe M-L (2009) The mammalian Nm23/NDPK family: from metastasis control to cilia movement. Mol Cell Biochem 329(1):51–62

    CAS  PubMed  Google Scholar 

  • Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L (2005) A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature 438(7070):1013–1016

    CAS  PubMed  Google Scholar 

  • Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36(1):105–113

    CAS  PubMed  Google Scholar 

  • Chen Q, Sun J, Zhai Q, Zhou W, Qi L, Xu L, Wang B, Chen R, Jiang H, Qi J, Li X, Palme K, Li C (2011) The basic helix-loop-helix transcription factor MYC2 directly represses PLETHORA expression during jasmonate-mediated modulation of the root stem cell niche in Arabidopsis. Plant Cell 23(9):3335–3352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Lin T, Xu H, Tian D, Luo Y, Ren C, Yang L, Shi J (2012) Cold-induced changes of protein and phosphoprotein expression patterns from rice roots as revealed by multiplex proteomic analysis. Plant Omics 5(2):194–199

    CAS  Google Scholar 

  • Cho SM, Shin SH, Kim KS, Kim YC, Eun MY, Cho BH (2004) Enhanced expression of a gene encoding a nucleoside diphosphate kinase 1 (OsNDPK1) in rice plants upon infection with bacterial pathogens. Mol Cells 18(3):390–395

    CAS  PubMed  Google Scholar 

  • Choi G, Kim J-I, Hong S-W, Shin B, Choi G, Blakeslee JJ, Murphy AS, Seo YW, Kim K, Koh E-J, Song P-S, Lee H (2005) A possible role for NDPK2 in the regulation of auxin-mediated responses for plant growth and development. Plant Cell Physiol 46(8):1246–1254

    CAS  PubMed  Google Scholar 

  • Ding WN, Lin L, Zhang BT, Xiang XB, Wu J, Pan ZC, Zhu SH (2015) OsKASI, a β-ketoacyl-[acyl carrier protein] synthase I, is involved in root development in rice (Oryza sativa L.). Planta 242(1): 203–213

    CAS  PubMed  Google Scholar 

  • Ding W, Wu J, Ye J, Zheng W, Wang S, Zhu X, Zhou J, Pan Z, Zhang B, Zhu S (2018) A Pelota-like gene regulates root development and defence responses in rice. Ann Bot 122(3):359–371

    PubMed  PubMed Central  Google Scholar 

  • Dorion S, Rivoal J (2015) Clues to the functions of plant NDPK isoforms. Naunyn-Schmiedeberg’s Arch Pharmacol 388(2):119–132

    CAS  Google Scholar 

  • Dorion S, Matton DP, Rivoal J (2006) Characterization of a cytosolic nucleoside diphosphate kinase associated with cell division and growth in potato. Planta 224(1):108–124

    CAS  PubMed  Google Scholar 

  • Dorion S, Clendenning A, Rivoal J (2017) Engineering the expression level of cytosolic nucleoside diphosphate kinase in transgenic solanum tuberosum roots alters growth, respiration and carbon metabolism. Plant J 89(5):914–926

    CAS  PubMed  Google Scholar 

  • Edlund B (1971) Purification of a nucleoside diphosphate kinase from pea seed and phosphorylation of the enzyme with adenosine (32 p) triphosphate. Acta Chem Scand 25(4):1370–1376

    CAS  PubMed  Google Scholar 

  • Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T (2013) The proteome response of Hordeum spontaneum to salinity stress. Cereal Res Commun 41(1):78–87

    CAS  Google Scholar 

  • Feng BH, Yang Y, Shi YF, Shen HC, Wang HM, Huang QN, Xu X, Lu XG, Wu JL (2013) Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonasoryzae pv. oryzae. J Integr Plant Biol 55(5):473–483

    CAS  PubMed  Google Scholar 

  • Fukamatsu Y, Yabe N, Hasunuma K (2003) Arabidopsis NDK1 is a component of ROS signaling by interacting with three catalases. Plant Cell Physiol 44(10):982–989

    CAS  PubMed  Google Scholar 

  • Gaff DF, Okong'O-Ogola O (1971) The use of non-permeating pigments for testing the survival of cells. J Exp Bot 22(3):756–758

    Google Scholar 

  • Hammargren J, Rosenquist S, Jansson C, Knorpp C (2008) A novel connection between nucleotide and carbohydrate metabolism in mitochondria: sugar regulation of the Arabidopsis nucleoside diphosphate kinase 3a gene. Plant Cell Rep 27(3):529–534

    CAS  PubMed  Google Scholar 

  • Haque ME, Yoshida Y, Hasunuma K (2010) ROS resistance in Pisumsativum cv. Alaska: the involvement of nucleoside diphosphate kinase in oxidative stress responses via the regulation of antioxidants. Planta 232(2):367–382

    CAS  PubMed  Google Scholar 

  • Harris N, Taylor JE, Roberts JA (1994) Isolation of a mRNA encoding a nucleoside diphosphate kinase from tomato that is up-regulated by wounding. Plant Mol Biol 25(4):739–742

    CAS  PubMed  Google Scholar 

  • Hetmann A, Kowalczyk S (2009) Nucleoside diphosphate kinase isoforms regulated by phytochrome A isolated from oat coleoptiles. Acta Biochim Pol 56(1):143–153

    CAS  PubMed  Google Scholar 

  • Jimmy JL, Babu S (2015) Role of OsWRKY transcription factors in rice disease resistance. Trop Plant Pathol 40(6):355–361

    Google Scholar 

  • Johansson M, MacKenzie-Hose A, Andersson I, Knorpp C (2004) Structure and mutational analysis of a plant mitochondrial nucleoside diphosphate kinase. Identification of residues involved in serine phosphorylation and oligomerization. Plant Physiol 136(2):3034–3042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kano A, Gomi K, Yamasaki-Kokudo Y, Satoh M, Fukumoto T, Ohtani K, Tajima S, Izumori K, Tanaka K, Ishida Y, Tada Y, Nishizawa Y, Akimitsu K (2010) A rare sugar, d-allose, confers resistance to rice bacterial blight with upregulation of defense-related genes in Oryza sativa. Phytopathology 100(1):85–90

    CAS  PubMed  Google Scholar 

  • Kauffman HE, Reddy APK, Hsieh SPY, Merca SD (1973) An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis Rep 57:537–541

    Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13(4):889–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kihara A, Saburi W, Wakuta S, Kim M-H, Hamada S, Ito H, Imai R, Matsui H (2011) Physiological and biochemical characterization of three nucleoside diphosphate kinase isozymes from rice (Oryzasativa L.). Biosci Biotech Biochem 75(9):1740–1745

    CAS  Google Scholar 

  • Lee D-G, Ahsan N, Lee S-H, Kang KY, Lee JJ, Lee B-H (2007) An approach to identify cold-induced low-abundant proteins in rice leaf. CR Biol 330(3):215–225

    CAS  Google Scholar 

  • Lin S-K, Chang M-C, Tsai Y-G, Lur H-S (2005) Proteomic analysis of the expression of proteins related to rice quality during caryopsis development and the effect of high temperature on expression. Proteomics 5(8):2140–2156

    CAS  PubMed  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550

    PubMed  PubMed Central  Google Scholar 

  • Mehta A, Orchard S (2009) Nucleoside diphosphate kinase (NDPK, NM23, AWD): recent regulatory advances in endocytosis, metastasis, psoriasis, insulin release, fetal erythroid lineage and heart failure; translational medicine exemplified. Mol Cell Biochem 329(1):3–15

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Y, Jiang L (2007) Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells. Nat Protoc 2(10):2348–2353

    CAS  PubMed  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100(1):358–363

    CAS  PubMed  Google Scholar 

  • Nahar K, Kyndt T, De Vleesschauwer D, Höfte M, Gheysen G (2011) The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol 157(1):305–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura T, Yatsunami K, Honda A, Sugimoto Y, Fukui T, Zhang J, Yamamoto J, Ichikawa A (1992) The amino acid sequence of nucleoside diphosphate kinase i from spinach leaves, as deduced from the cDNA sequence. Arch Biochem Biophys 297(1):42–45

    CAS  PubMed  Google Scholar 

  • Pan L, Kawai M, Yano A, Uchimiya H (2000) Nucleoside diphosphate kinase required for coleoptile elongation in rice. Plant Physiol 122(2):447–452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parks RE, Aganwal RP (1973) 9 nucleoside diphosphokinases. In: Boyer PD (ed) The enzymes, 8th edn. Academic Press, Cambridge, pp 307–333

    Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber APM, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150(1):125–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roymans D, Willems R, Van Blockstaele DR, Slegers H (2002) Nucleoside diphosphate kinase (NDPK/NM23) and the waltz with multiple partners: possible consequences in tumor metastasis. Clin Exp Metastasis 19(6):465–476

    CAS  PubMed  Google Scholar 

  • Růžička K, Ljung K, Vanneste S, Podhorská R, Beeckman T, Friml J, Benková E (2007) Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19(7):2197–2212

    PubMed  PubMed Central  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2(9):1131–1145

    CAS  PubMed  Google Scholar 

  • Sweetlove LJ, Mowday B, Hebestreit HF, Leaver CJ, Millar AH (2001) Nucleoside diphosphate kinase III is localized to the inter-membrane space in plant mitochondria. FEBS Lett 508(2):272–276

    CAS  PubMed  Google Scholar 

  • Takatsuka H, Umeda M (2014) Hormonal control of cell division and elongation along differentiation trajectories in roots. J Exp Bot 65(10):2633–2643

    CAS  PubMed  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MapMan: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939

    CAS  PubMed  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143(4):606–616

    CAS  PubMed  Google Scholar 

  • Veljovic-Jovanovic S, Noctor G, Foyer CH (2002) Are leaf hydrogen peroxide concentrations commonly overestimated? The potential influence of artefactual interference by tissue phenolics and ascorbate. Plant Physiol Biochem 40(6):501–507

    CAS  Google Scholar 

  • Verslues PE, Kim Y-S, Zhu J-K (2007) Altered ABA, proline and hydrogen peroxide in an Arabidopsis glutamate:glyoxylate aminotransferase mutant. Plant Mol Biol 64(1):205–217

    CAS  PubMed  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: BIOSYNTHESIS, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in annals of botany. Ann Bot 111:1021–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu L, Zhao H, Ruan W, Deng M, Wang F, Peng J, Luo J, Chen Z, Yi K (2017) ABNORMAL INFLORESCENCE MERISTEM1 functions in salicylic acid biosynthesis to maintain proper reactive oxygen species levels for root meristem activity in rice. Plant Cell 29:560–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Lu X, Ma B, Chen S-Y, Zhang J-S (2015) Ethylene signaling in rice and Arabidopsis: conserved and diverged aspects. Mol Plant 8(4):495–505

    CAS  PubMed  Google Scholar 

  • Yano A, Shimazaki T, Kato A, Umeda M, Uchimiya H (1993) Molecular cloning and nucleotide sequence cDNA encoding nucleoside diphosphate kinase of rice (Oryza sativa L.). Plant Mol Biol 23:1087–1090

    CAS  PubMed  Google Scholar 

  • Ye W, Hu S, Wu L, Ge C, Cui Y, Chen P, Wang X, Xu J, Ren D, Dong G, Qian Q, Guo L (2016) White stripe leaf 12 (WSL12), encoding a nucleoside diphosphate kinase 2 (OsNDPK2), regulates chloroplast development and abiotic stress response in rice (Oryzasativa L.). Mol Breed 36(5):57

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Movahedi A, Sang M, Wei Z, Xu J, Wang X, Wu X, Wang M, Yin T, Zhuge Q (2017) Functional analyses of NDPK2 in Populus trichocarpa and overexpression of PtNDPK2 enhances growth and tolerance to abiotic stresses in transgenic poplar. Plant Physiol Biochem 117:61–74

    CAS  PubMed  Google Scholar 

  • Zhu Z-X, Liu Y, Liu S-J, Mao C-Z, Wu Y-R, Wu P (2012) A gain-of-function mutation in OsIAA11 affects lateral root development in rice. Mol Plant 5(1):154–161

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Numbers 31300246, 31371595], the Zhejiang Provincial Natural Science Foundation of China [Grant Numbers LY17C020002], the Natural Science Foundation of Ningbo [Grant Number 2019A610413] and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wona Ding, Botao Zhang or Shihua Zhu.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Ding, W., Chen, Y. et al. A nucleoside diphosphate kinase gene OsNDPK4 is involved in root development and defense responses in rice (Oryza sativa L.). Planta 251, 77 (2020). https://doi.org/10.1007/s00425-020-03355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-020-03355-9

Keywords

Navigation