Skip to main content
Log in

Genome-wide analysis of laccase genes in moso bamboo highlights PeLAC10 involved in lignin biosynthesis and in response to abiotic stresses

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Twenty-three PeLACs have been identified in moso bamboo, overexpression of PeLAC10 increases the lignin content and confers drought and phenolic acid tolerance in transgenic Arabidopsis.

Abstract

Laccases (LACs) have multifunction involved in the processes of cell elongation, lignification and stress response in plants. However, the function of laccases in bamboo remain unclear. Here, a total of 23 laccase genes (PeLAC1PeLAC23) were identified in moso bamboo (Phyllostachys edulis). The diverse gene structure and expression pattern of PeLACs suggested that their function should be spatiotemporal and complicated, which was supported by the expression profiles in different tissues of moso bamboo. Eighteen PeLACs were identified as the targets of ped-miR397. The putative ped-miR397-binding site in the coding region of PeLAC10 was further confirmed by RLM-5′ RACE, indicating that PeLAC10 was regulated by ped-miR397 after transcription. With the increasing shoot height, the expression abundance of PeLAC10 was up-regulated and reached the maximum in 15 cm shoots, while that of ped-miR397 was relative lower and showed the minimum in 15 cm shoots. PeLAC10 was up-regulated obviously under both ABA (100 μmol L–1) and NaCl (400 mmol L–1) treatments, and it was down-regulated under the GA3 (100 μmol L–1) treatment. The transgenic Arabidopsis plants over-expressing PeLAC10 became slightly smaller and their petioles were shorter than those of Col-0. However, they had a stronger capacity in resistance to phenolic acids and drought besides higher lignin content in stems. These results indicated that overexpression of PeLAC10 was helpful to increase the content of lignin in transgenic Arabidopsis and improve the adaptability to phenolic acid and drought stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

4CL:

4-(Hydroxy) cinnamoyl CoA ligase

C3H:

p-coumarate 3-hydroxylase

C4H:

Cinnamate 4-hydroxylase

CAD:

Cinnamyl alcohol dehydrogenase

CAT:

Catalase

CCoAOMT:

Caffeoyl CoA O-methyltransferase

CCR:

Cinnamoyl CoA reductase

COMT:

Caffeic acid/5-hydroxyferulic acid O-methyltransferase

F5H:

Ferulate 5-hydroxylase

LAC:

Laccase

MDA:

Malondialdehyde

ORF:

Open reading frame

PAL:

Phenylalanine ammonia-lyase

POD:

Peroxidase

qRT-PCR:

Quantitative real-time polymerase chain reaction

RLM-5′ RACE:

RNA ligase mediated 5′ rapid amplification of cDNA ends

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription PCR

SOD:

Superoxide dismutase

References

  • Balasubramanian VK, Rai KM, Thu SW, Hii MM, Mendu V (2016) Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development. Sci Rep 6:34309

  • Baldrian P (2006) Fungal laccases–occurrence and properties. FEMS Microbiol Rev 30(2):215–242

    Article  PubMed  CAS  Google Scholar 

  • Bang SW, Lee DK, Jung H, Chung PJ, Kim YS, Choi YD, Suh JW, Kim JK (2019) Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance. Plant Biotechnol J 17(1):118–131

    Article  PubMed  CAS  Google Scholar 

  • Barzegargolchini B, Movafeghi A, Dehestani A, Mehrabanjoubani P (2017) Increased cell wall thickness of endodermis and protoxylem in Aeluropus littoralis roots under salinity: the role of LAC4 and PER64 genes. J Plant Physiol 218:127–134

    Article  PubMed  CAS  Google Scholar 

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, Borrega N, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23(3):1124–1137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28(12):1883–1896

    Article  PubMed  CAS  Google Scholar 

  • Cai X, Davis EJ, Ballif J, Liang M, Bushman E, Haroldsen V, Torabinejad J, Wu Y (2006) Mutant identification and characterization of the laccase gene family in Arabidopsis. J Exp Bot 57(11):2563–2569

    Article  PubMed  CAS  Google Scholar 

  • Cesarino I, Araújo P, Sampaio Mayer JL, Vicentini R, Berthet S, Demedts B, Vanholme B, Boerjan W, Mazzafera P (2013) Expression of SofLAC, a new laccase in sugarcane, restores lignin content but not S:G ratio of Arabidopsis lac17 mutant. J Exp Bot 64(6):1769–1781

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler K (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cho HY, Lee C, Hwang SG, Park YC, Lim HL, Jang CS (2014) Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis. Gene 552(1):98–105

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39(Web Server Issue):W155–159

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62(10):3563–3573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dittmer NT, Suderman RJ, Jiang H, Zhu YC, Gorman MJ, Kramer KJ, Kanost MR (2004) Characterization of cDNAs encoding putative laccase-like multicopper oxidases and developmental expression in the tobacco hornworm, Manduca sexta, and the malaria mosquito Anopheles gambiae. Insect Biochem Mol Biol 34(1):29–41

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Ma J, Guo Q, Li X, Wang H, Lu M (2013) Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis). PLoS One 8(2):e56573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Galuszka P, Frébortová J, Luhová L, Bilyeu KD, English JT, Frébort I (2005) Tissue localization of cytokinin dehydrogenase in maize: possible involvement of quinone species generated from plant phenolics by other enzymatic systems in the catalytic reaction. Plant Cell Physiol 46(5):716–728

    Article  PubMed  CAS  Google Scholar 

  • Gao ZM, Wang XC, Peng ZH, Zheng B, Liu Q (2012) Characterization and primary functional analysis of phenylalanine ammonia-lyase gene from Phyllostachys edulis. Plant Cell Rep 31(7):1345–1356

    Article  PubMed  CAS  Google Scholar 

  • Houston K, Tucker MR, Chowdhury J, Shirley N, Little A (2016) The plant cell wall: a complex and dynamic structure as revealed by the responses of genes under stress conditions. Front Plant Sci 7:984

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang ZH (2002) Bamboo and rattan in the world. Liaoning Sci Tech Publishing Press, Shenyang (in Chinese)

    Google Scholar 

  • Jin SY, Lu MZ, Gao J (2010) Cloning and expression analysis of the C4H gene involved in the lignin biosynthesis in Phyllostachys edulis. Forest Res 23(3):319–325 (in Chinese)

    Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  PubMed  CAS  Google Scholar 

  • Lee DK, Yoon S, Kim YS, Kim JK (2017) Rice OsERF71-mediated root modification affects shoot drought tolerance. Plant Signal Behav 12(1):e1268311

    Article  PubMed  CAS  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li LC, Lou YF, Yang YH, Zhao HS, Gao ZM (2017) Cloning and expression analysis of PeLAC in Phyllostachys edulis. Plant Sci J 35(2):252–259

    Google Scholar 

  • Li Y, Feng P (2019) Bamboo resources in China based on the ninth national forest resources inventory data. World Bamboo Rattan 17(6):45–48 (in Chinese)

    Google Scholar 

  • Liu Q, Luo L, Wang X, Shen Z, Zheng L (2017) Comprehensive analysis of rice laccase gene (OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci 18(2):pii:E209

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, Kim H, Liu J, Song J, Sun YH, Yuan L, Yeh TF, Peszlen I, Ralph J, Sederoff RR, Chiang VL (2013) Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proc Natl Acad Sci USA 110(26):10848–10853

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma B, Gao L, Zhang H, Cui J, Shen Z (2012) Aluminum-induced oxidative stress and changes in antioxidant defenses in the roots of rice varieties differing in Al tolerance. Plant Cell Rep 31(4):687–696

    Article  PubMed  CAS  Google Scholar 

  • Moore K, Roberts LJ 2nd (1998) Measurement of lipid peroxidation. Free Radic Res 28(6):659–671

    Article  PubMed  CAS  Google Scholar 

  • Moreira-Vilar FC, Siqueira-Soares Rde C, Finger-Teixeira A, de Oliveira DM, Ferro AP, da Rocha GJ, Ferrarese Mde L, dos Santos WD, Ferrarese-Filho O (2014) The acetyl bromide method is faster, simpler and presents best recovery of lignin in different herbaceous tissues than Klason and thioglycolic acid methods. PLoS One 9(10):e110000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng Z, Lu Y, Li L, Zhao Q, Feng Q, Gao Z, Lu H, Hu T, Yao N, Liu K, Li Y, Fan D, Guo Y, Li W, Lu Y, Weng Q, Zhou C, Zhang L, Huang T, Zhao Y, Zhu C, Liu X, Yang X, Wang T, Miao K, Zhuang C, Cao X, Tang W, Liu G, Liu Y, Chen J, Liu Z, Yuan L, Liu Z, Huang X, Lu T, Fei B, Ning Z, Han B, Jiang Z (2013) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45(4):456–461

    Article  PubMed  CAS  Google Scholar 

  • Pomar F, Merino F, Barceló AR (2002) O-4-Linked coniferyl and sinapyl aldehydes in lignifying cell walls are the main targets of the Wiesner (phloroglucinol-HCl) reaction. Protoplasma 220(1–2):17–28

    Article  PubMed  CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17(11):2966–2980

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L (2013) Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS One 8(6):e65633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shafi A, Dogra V, Gill T, Ahuja PS, Sreenivasulu Y (2014) Simultaneous over-expression of PaSOD and RaAPX in transgenic Arabidopsis thaliana confers cold stress tolerance through increase in vascular lignifications. PLoS One 9:e110302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832

    Article  CAS  Google Scholar 

  • Sun HY, Chen Y, Zhao HS, Dong LL, Wang LL, Lou YF, Gao ZM (2015) Molecular characteristics and functional analysis of β-carotene hydroxylase gene from Phyllostachys edulis. Sci Silv Sin 51(10):53–59 (in Chinese)

    CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

  • Turlapati PV, Kim KW, Davin LB, Lewis NG (2011) The laccase multigene family in Arabidopsis thaliana: towards addressing the mystery of their gene function(s). Planta 233(3):439–470

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Feng J, Jia W, Chang S, Li S, Li Y (2015a) Lignin engineering through laccase modification: a promising field for energy plant improvement. Biotechnol Biofuels 8:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Feng J, Jia W, Fan P, Bao H, Li S, Li Y (2017) Genome-wide identification of Sorghum bicolor laccases reveals potential targets for lignin modification. Front Plant Sci 8:714

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Zhu ML, Wei ZM (2008) Cotton laccase gene overexpression in transgenic Populus alba var. pyramidalis and its effects on the lignin biosynthesis in transgenic plants. J Mol Cell Biol 41(1):11–18 (in Chinese)

  • Wang L, Zhao H, Chen D, Li L, Sun H, Lou Y, Gao Z (2016) Characterization and primary functional analysis of a bamboo NAC gene targeted by miR164b. Plant Cell Rep 35(6):1371–1383

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Bouchabke-Coussa O, Lebris P, Antelme S, Soulhat C, Gineau E, Dalmais M, Bendahmane A, Morin H, Mouille G, Legée F, Cézard L, Lapierre C, Sibout R (2015b) LACCASE 5 is required for lignification of the Brachypodium distachyon culm. Plant Physiol 168(1):192–204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang L, Lou Y, Peng Z, Zhao H, Sun H, Gao Z (2015) Molecular characterization and primary functional analysis of PeMPEC, a magnesium-protoporphyrin IX monomethylester cyclase gene of bamboo (Phyllostachys edulis). Plant Cell Rep 34(11):2001–2011

    Article  PubMed  CAS  Google Scholar 

  • Yang XW, Peng ZH, Gao ZM, Li XP (2009) Study on the cloning and expression of a p-coumarate 3-hydroxylase gene in Phyllostachys edulis. J Anhui Agri Sci 37(29):14051–14053, 14197 (in Chinese)

  • Zhang H, Ying YQ, Wang J, Zhao XH, Zeng W, Beahan C, He JB, Chen XY, Bacic A, Song LL, Wu AM (2018) Transcriptome analysis provides insights into xylogenesis formation in Moso bamboo (Phyllostachys edulis) shoot. Sci Rep 8(1):3951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao H, Peng Z, Fei B, Li L, Hu T, Gao Z, Jiang Z (2014a) BambooGDB: a bamboo genome database with functional annotation and an analysis platform. Database (Oxf) 2014:bau006

  • Zhao H, Wang L, Dong L, Sun H, Gao Z (2014) Discovery and comparative profiling of microRNAs in representative monopodial bamboo (Phyllostachys edulis) and sympodial bamboo (Dendrocalamus latiflorus). PLoS One 9(7):e102375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou J, Lee C, Zhong R, Ye ZH (2009) MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 21(1):248–266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu Y, Huang J, Wang K, Wang B, Sun S, Lin X, Song L, Wu A, Li H (2020) Characterization of lignin structures in Phyllostachys edulis (Moso bamboo) at different ages. Polymers (Basel) 12(1):E187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Special Fund for Fundamental Scientific Research on Professional Work Supported by the International Center for Bamboo and Rattan (No. 1632019008) and the Special Fund for Forest Scientific Research in the Public Welfare from State Forestry Administration of China (No. 201504106).

Author information

Authors and Affiliations

Authors

Contributions

ZMG and LCL designed the experiments; LCL and KBY performed experiments; LCL and KBY analyzed data; SNW, LYF, and CLZ contributed reagents/materials/analysis tools; ZMG and LCL wrote the paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhimin Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Hiroyasu Ebinuma.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 959 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yang, K., Wang, S. et al. Genome-wide analysis of laccase genes in moso bamboo highlights PeLAC10 involved in lignin biosynthesis and in response to abiotic stresses. Plant Cell Rep 39, 751–763 (2020). https://doi.org/10.1007/s00299-020-02528-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-020-02528-w

Keywords

Navigation