Skip to main content

Advertisement

Log in

Microstructural interpretations on thermo-mechanical relaxation and electrical conductivity of polyamide-12/polypropylene-MWCNT nanocomposites

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Ternary-nanocomposites of polyamide 12 (PA-12) and multi-walled carbon nanotubes-embedded-polypropylene (MWCNT-embedded-PP) were fabricated by direct-melt-mixing-route and characterized for their dispersion-nanomorphology and phase-selective micromorphology. The crystallite sizes remained in the range of 8–9 nm and a broadening in loss-tangent peaks shifting towards higher temperatures with MWCNT was observed. The DC electrical conductivity remained dependent on the change in morphology from domain-dispersed (MWCNT-embedded-PP dispersed in PA-12 matrix) in PA-12/PP-MWCNT (70:30) to quasi-co-continuous (MWCNT-embedded-PP forming elongated domains of PP-MWCNT dispersed in PA-12 matrix tending to be near-continuous) in PA-12/PP-MWCNT (60:40). The conceptual feasibility of designing nanocomposites wherein the switch-over in solid-state relaxation behaviour vis-a-vis electrical conductivity is thus found to be controlled by morphology that ensures phase-selective conductive response for functional applications, as in flexible electronics, unlike the ones with rigid and high melting (thermally stiff) polyamides such as polyamide 6 or polyamide 66.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu G, Zhao C, Zhang S, Yang M, Wang Z (2006) Low percolation thresholds of electrical conductivity and rheology in poly (ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer. 47:480–488

    CAS  Google Scholar 

  2. Ding X, Wang J, Zhang S, Wang J, Li S (2016) Carbon black-filled polypropylene as a positive temperature coefficient material : effect of filler treatment and heat treatment. Polym Bull 73:369–383

    CAS  Google Scholar 

  3. Zhao S, Lou D, Zhan P, Li G, Dai K, Guo J, Zheng G, Liu C, Shen C, Guo Z (2017) Heating-induced negative temperature coefficient effect in conductive graphene/polymer ternary nanocomposites with a segregated and double-percolated structure. J Mater Chem C 5:8233–8242

    CAS  Google Scholar 

  4. Mamunya YP, Muzychenko YV, Lebedev EV, Boiteux G, Seytre G, Boullanger C, Pissis P (2007) PTC effect and structure of polymer composites based on polyethylene / Polyoxymethylene blend filled with dispersed iron. Polym Eng Sci 47:34–42

    CAS  Google Scholar 

  5. Rybak A, Boiteux G, Melis F, Seytre G (2010) Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices. Compos Sci Technol 70:410–416

    CAS  Google Scholar 

  6. Zeng Y, Lu G, Wang H, Du J, Ying Z, Liu C (2014) Positive temperature coefficient thermistors based on carbon nanotube/polymer composites. Sci Rep 4:1–7

    Google Scholar 

  7. Lee J, Kwan S, Hoon N (2006) Effects of the addition of multi-walled carbon nanotubes on the positive temperature coefficient characteristics of carbon-black-filled high-density polyethylene nanocomposites. Scripta Mater 55:1119–1122

    CAS  Google Scholar 

  8. Xiang Z, Chen T, Li Z, Bian X (2009) Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites. Macromol Mater Eng 294:91–95

    CAS  Google Scholar 

  9. Cui X, Zhu Y, Jiang W (2018) Lightweight and conductive carbon black/chlorinated poly(propylene carbonate) foams with a remarkable negative temperature coefficient effect of resistance for temperature sensor applications. J Mater Chem C 6:9354–9362

    CAS  Google Scholar 

  10. Qu Y, Zhang W, Dai K, Zheng G, Liu C, Chen J, Shen C (2014) Tuning of the PTC and NTC effects of conductive CB / PA6 / HDPE composite utilizing an electrically superfine electrospun network. Mater Lett 132:48–51

    CAS  Google Scholar 

  11. Arboleda L, Ares A, Abad MJ, Ferreira A, Costa P, Lanceros-Mendez S (2013) Piezoresistive response of carbon nanotubes-polyamides composites processed by extrusion. J Polym Res 20:326

    Google Scholar 

  12. Wu CM, Cheong SS, Chang TH (2016) Rheological properties of graphene/nylon 6 nanocomposites prepared by masterbatch melt mixing. J Polym Res 23:242

    Google Scholar 

  13. Chen J, Hou Y, Zhang M, Liu D, Yang JH, Wang Y, Zhou ZW, Yuan GP (2014) Combined effect of compatibilizer and carbon nanotubes on the morphology and electrical conductivity of PP / PS blend. Polym Adv Technol 25:624–630

    CAS  Google Scholar 

  14. Fenouillot F, Cassagnau P, Majesté JC (2009) Uneven distribution of nanoparticles in immiscible fluids : morphology development in polymer blends. Polymer 50:1333–1350

    CAS  Google Scholar 

  15. Zonder L, Ophir A, Kenig S, McCarthy S (2011) The effect of carbon nanotubes on the rheology and electrical resistivity of polyamide 12/high density polyethylene blends. Polymer 52:5085–5091

    CAS  Google Scholar 

  16. Baudouin AC, Bailly C, Devaux J (2010) Interface localization of carbon nanotubes in blends of two copolymers. Polym Degrad Stab 95:389–398

    CAS  Google Scholar 

  17. Li Y, Shimizu H (2008) Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of cocontinuous and nanodispersion structures. Macromol 41:5339–5344

    CAS  Google Scholar 

  18. Baudouin AC, Devaux J, Bailly C (2010) Localization of carbon nanotubes at the interface in blends of polyamide and ethylene-acrylate copolymer. Polymer 51:1341–1354

    CAS  Google Scholar 

  19. Xiang F, Shi Y, Li X, Huang T, Chen C, Peng Y, Wang Y (2012) Cocontinuous morphology of immiscible high density polyethylene/polyamide 6 blend induced by multiwalled carbon nanotubes network. Eur Polym J 48:350–361

    CAS  Google Scholar 

  20. Otero-Navas I, Arjmand M, Sundararaj U (2017) Carbon nanotube induced double percolation in polymer blends: morphology, rheology and broadband dielectric properties. Polymer 114:122–134

    CAS  Google Scholar 

  21. Liu XQ, Yang W, Xie BH, Yang MB (2012) Influence of multiwall carbon nanotubes on the morphology, melting, crystallization and mechanical properties of polyamide 6/acrylonitrile-butadiene-styrene blends. Mater Des 34:355–362

    CAS  Google Scholar 

  22. Mcnally T, Murphy WR, Lew CY, Turner RJ, Brennan GP (2003) Polyamide-12 layered silicate nanocomposites by melt blending. Polymer 44:2761–2772

    CAS  Google Scholar 

  23. Das D, Satapathy BK (2014) Designing tough and fracture resistant polypropylene/multi wall carbon nanotubes nanocomposites by controlling stereo-complexity and dispersion morphology. Mater Des 54:712–777

    CAS  Google Scholar 

  24. Phang IY, Liu T, Mohamed A, Pramoda KP, Chen L, Shen L, Chow SY, He C, Lu X, Hu X (2005) Morphology, thermal and mechanical properties of nylon 12/organoclay nanocomposites prepared by melt compounding. Polym Int 54:456–464

    CAS  Google Scholar 

  25. Bindumadhavan K, Srivastava SK, Mahanty S (2013) MoS2–MWCNT hybrids as a superior anode in lithium-ion batteries. Chem Comm 49:1823–1825

    PubMed  CAS  Google Scholar 

  26. Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stabil 95:778–781

    CAS  Google Scholar 

  27. Gao X, Zhang S, Mai F, Lin L, Deng Y, Deng H, Fu Q (2011) Preparation of high performance conductive polymer fibres from double percolated structure. J Mater Chem 21:6401–6408

    CAS  Google Scholar 

  28. Yan D, Li X, Ma HL, Tang XZ, Zhang Z, Yu ZZ (2013) Effect of compounding sequence on localization of carbon nanotubes and electrical properties of ternary nanocomposites. Compos Part A Appl Sci Manuf 49:35–41

    CAS  Google Scholar 

  29. Cohen E, Zonder L, Ophir A, Kenig S, McCarthy S, Barry C, Mead J (2013) Hierarchical structures composed of confined carbon nanotubes in cocontinuous ternary polymer blends. Macromol 46:1851–1859

    CAS  Google Scholar 

  30. Salehiyan R, Ray SS (2018) Tuning the conductivity of Nanocomposites through nanoparticle migration and Interface crossing in immiscible polymer blends : a review on fundamental understanding. Macromol Mater Eng 1800431:1–33

    Google Scholar 

  31. Mamunya Y, Levchenko V, Boiteux G, Seytre G, Zanoaga M, Tanasa F, Lebedev E (2016) Controlling Morphology , Electrical , and Mechanical Properties of Polymer Blends by Heterogeneous Distribution of Carbon Nanotubes. Polym Compos 37:2467–2477

    CAS  Google Scholar 

  32. Zonder L, McCarthy S, Rios F et al (2014) Viscosity ratio and interfacial tension as carbon nanotubes distributing factors in melt-mixed blends of polyamide 12 and high-density polyethylene. Adv Polym Technol 33:1–7

    Google Scholar 

  33. González I, Eguiazábal JI, Nazabal J (2012) Attaining high electrical conductivity and toughness in PA6 by combined addition of MWCNT and rubber. Compos Part A Appl Sci Manuf 43:1482–1489

    Google Scholar 

  34. Tao F, Nysten B, Baudouin AC, Thomassin JM, Vuluga D, Detrembleur C, Bailly C (2011) Influence of nanoparticle-polymer interactions on the apparent migration behaviour of carbon nanotubes in an immiscible polymer blend. Polymer 52:4798–4805

    CAS  Google Scholar 

  35. Hoepfner JC, Loos MR, Pezzin SH (2019) Role of the degree of acetalization on dynamic mechanical properties of polyvinyl butyral/carbon nanotube composites. J Appl Polym Sci 43:48146

  36. Abdullah SA, Iqbal A, Frormann L (2008) Melt mixing of carbon fibers and carbon nanotubes incorporated polyurethanes. J Appl Polym Sci 110:196–202

    CAS  Google Scholar 

  37. Li RKY, Liang JZ, Tjong SC (1998) Morphology and dynamic mechanical properties of glass beads filled low density polyethylene composites. J Mater Process Technol 79:59–65

    Google Scholar 

  38. Jogi BF, Sawant M, Brahmankar PK, Ratna D, Tarhekar MC (2014) Study of mechanical and crystalline behavior of polyamide 6/Hytrel/carbon nanotubes (CNT) based polymer composites. Procedia Mater Sci 6:805–811

    CAS  Google Scholar 

  39. Bindu MG, Satapathy BK, Jaggi HS, Ray AR (2013) Size-scale effects of silica on bis-GMA / TEGDMA based nanohybrid dental restorative composites. Compos Part B Eng 53:92–102

    CAS  Google Scholar 

  40. Chen J, Du XC, Zhang WB, Yang JH, Zhang N, Huang T, Wang Y (2013) Synergistic effect of carbon nanotubes and carbon black on electrical conductivity of PA6/ABS blend. Compos Sci Technol 81:1–8

    CAS  Google Scholar 

  41. Hoseini AHA, Arjmand M, Sundararaj U, Trifkovic M (2017) Significance of interfacial interaction and agglomerates on electrical properties of polymer-carbon nanotube nanocomposites. Mater Des 125:126–134

    CAS  Google Scholar 

  42. Hoseini AHA, Arjmand M, Sundararaj U, Trifkovic M (2017) Tunable electrical conductivity of polystyrene/polyamide-6/carbon nanotube blend nanocomposites via control of morphology and nanofiller localization. Eur Polym J 95:418–429

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhabani K. Satapathy.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethy, S., Satapathy, B.K. Microstructural interpretations on thermo-mechanical relaxation and electrical conductivity of polyamide-12/polypropylene-MWCNT nanocomposites. J Polym Res 27, 84 (2020). https://doi.org/10.1007/s10965-020-02045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02045-0

Keywords

Navigation