Skip to main content
Log in

Hybrid organic-inorganic materials on the basis of acrylic monomers and TEOS prepared by simultaneous UV-curing and sol-gel process

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work cross-linked hybrid organic-inorganic membranes consisting of polymeric matrix functionalized with sulfonic groups and uniformly distributed silica domains have been successfully synthesized through in situ polymerization strategy via photo-initiated copolymerization of acrylic monomers (acrylonitrile AN, acrylamide AAm, 3-sulfopropyl acrylate potassium salt SPAK) and simultaneous formation of silica counterpart using TEOS-based sol-gel system. N,N′-methylenebis(acrylamide) (MBA) was used as a cross-linker. The ratio between monomers was maintained stable, whereas the amount of added sol-gel system was varied. The influence of inorganic component content on properties of hybrid polymer-inorganic membranes was investigated. Chemical composition, thermal properties, structure and morphology of the obtained hybrid membranes were investigated by ATR-FTIR, TGA, DSC, SEM and EFTEM. Proton conductivity of the synthesized membranes was high (7.6 to 13.5 mS/cm) and increases with an increase of silica content. The prepared membranes were thermally stable up to 90 °C, and exhibited proton conductivity and swelling coefficients sufficient for possible use as proton-conducting membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Larminie J, Dicks A (2003) John Wiley & Sons ltd

    Google Scholar 

  2. Fu RQ, Woo JJ, Seo SJ, Lee JS, Moon SH (2008). J Power Sources 179(2):458

    Article  CAS  Google Scholar 

  3. Zapata P, Lee JH, Meredith JC (2012). J Appl Polym Sci 124:E241

    Article  CAS  Google Scholar 

  4. Mauritz KA, Moore RB (2004) State of understanding of nafion. Chem Rev 104(10):4535–4585

    Article  CAS  PubMed  Google Scholar 

  5. Di Noto V, Zawodzinski TA, Herring AM, Giffin GA, Negro E, Lavina S (2012). Int J Hydrog Energy 37(7):6120

    Article  Google Scholar 

  6. Laberty-Robert C, Valle K, Pereira F, Sanchez C (2011) Design and properties of functional hybrid organic-inorganic membranes for fuel cells. Chem Soc Rev 40(2):961–1005

    Article  CAS  PubMed  Google Scholar 

  7. Smitha B, Sridhar S, Khan AA (2005). J Membr Sci 259(1–2):10

    Article  CAS  Google Scholar 

  8. Mahdavi H, Ahmadian-Alam L (2015). J Polym Res 22:67

    Article  Google Scholar 

  9. Celik SU, Bozkurt A (2013). J Polym Res 20:63

    Article  Google Scholar 

  10. Sanchez C, Julian B, Belleville P, Popall M (2005). J Mater Chem 15(35–36):3559

    Article  CAS  Google Scholar 

  11. Nagarale RK, Shin W, Singh PK (2010). Polym Chem 1(4):388

    Article  CAS  Google Scholar 

  12. Sanchez C, Rozes L, Ribot F, Laberty-Robert C, Grosso D, Sassoye C, Boissiere C, Nicole L (2010). Comptes Rendus Chimie 13(1–2):3

    Article  CAS  Google Scholar 

  13. Kausar A, Hussain A, Khan MY, Siddiq M (2014). J Plast Film Sheeting 30(3):314

    Article  Google Scholar 

  14. Sel O, Soules A, Ameduri B, Boutevin B, Laberty-Robert C, Gebel G, Sanchez C (2010). Adv Funct Mater 20(7):1090

    Article  CAS  Google Scholar 

  15. Tamaki R, Naka K, Chujo Y (1998). Polym J 30(1):60

    Article  CAS  Google Scholar 

  16. Akhter T, Park OO, Siddiqi HM, Saeed S, Saoud KM (2014). RSC Adv 4(87):46587

    Article  CAS  Google Scholar 

  17. Suciu C, Hoffmann AC, Dorolti E, Tetean R (2008). Chem Eng J 140(1–3):586

    Article  CAS  Google Scholar 

  18. Gurtekin M, Kayaman-Apohan N, Kahraman MV, Menceloglu Y, Gungor A (2009). React Funct Polym 69(9):698

    Article  CAS  Google Scholar 

  19. Fu RQ, Hong L, Lee JY (2008). Fuel Cells 8(1):52

    Article  CAS  Google Scholar 

  20. Demydova K, Horechyy A, Yevchuk I, Demchyna O (2018). Chem Chem Technol 12(1):58

    Article  CAS  Google Scholar 

  21. Socrates G (2001) John Wiley & Sons ltd

    Google Scholar 

  22. Magana S, Festin N, Fumagalli M, Chikh L, Gouanve F, Mareau VH, Gonon L, Fichet O, Espuche E (2015). J Membr Sci 494:161

    Article  CAS  Google Scholar 

  23. Hartwig A, Sebald M, Kleemeier M (2005). Polymer 46(7):2029

    Article  CAS  Google Scholar 

  24. Aparicio M, Duran A (2004). J Sol-Gel Sci Technol 31(1–3):103

    Article  CAS  Google Scholar 

  25. Horecha M, Senkovskyy V, Stamm M, Kiriy A (2009). Macromolecules 42(15):5811

    Article  CAS  Google Scholar 

  26. Yaroslavtsev AB, Dobrovolskyi YA, Shaglayeva NS (2012). Uspekhi khimii 81(3):191

    Article  CAS  Google Scholar 

  27. Hummel DO, Scholl F (1988). Verlag Chemie International, Munich 393

  28. Peruzzo PJ, Anbinder PS, Pardini OR, Vega J, Costa CA, Galembeck F, Amalvy JI (2011). Prog Org Coat 72(3):429

    Article  CAS  Google Scholar 

  29. Stadniy IA, Konovalova VV, Samchenko YM, Pobigay GA, Burban AF, Ulberg ZR (2011). Mater Sci Appl 2:270

    CAS  Google Scholar 

  30. Es-haghi SS, Leonov AI, Weiss RA (2014). Macromolecules 47(14):4769

    Article  CAS  Google Scholar 

  31. Kim DS, Park HB, Rhim JW, Lee YM (2004). J Membr Sci 240(1–2):37

    Article  CAS  Google Scholar 

  32. Toppani A, Robert F, Libourel G, De Donato P, Barres O, d'Hendecourt L, Ghanbaja J (2005) A 'dry' condensation origin for circumstellar carbonates. Nature 437(7062):1121–1124

    Article  CAS  PubMed  Google Scholar 

  33. Li WZ, Gao C, Guo JY, Ren YZ, Deng XW, Liu Y (2015). Solid State Ionics 278:254

    Article  CAS  Google Scholar 

  34. Huang SL, Chin WK, Yang WP (2004). J Polym Sci, Part B: Polym Phys 42(18):3476

    Article  CAS  Google Scholar 

  35. Sahu AK, Selvarani G, Bhat SD, Pitchumani S, Sridhar P, Shukla AK, Narayanan N, Banerjee A, Chandrakumar N (2008). J Membr Sci 319(1–2):298

    Article  CAS  Google Scholar 

  36. Li FS, Zhou SX, Wu LM (2005). J Appl Polym Sci 98(5):2274

    Article  CAS  Google Scholar 

  37. Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004). Chem Rev 104(10):4587

    Article  CAS  PubMed  Google Scholar 

  38. Wu CM, Wu YH, Xu TW, Fu YX (2008). J Appl Polym Sci 107(3):1865

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Khrystyna Demydova acknowledges German Academic Exchange Service (DAAD) for financial support (ResearchGrants for Doctoral Candidates and Young Academicsand Scientists 2015/16, program ID 57130104). Authors also thank Dr. Petr Formanek and Uta Reuter for their help with TEM experiments, and Dr. Klaus-Jochen Eichhorn for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Demchyna.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demydova, K., Horechyy, A., Meier-Haaсk, J. et al. Hybrid organic-inorganic materials on the basis of acrylic monomers and TEOS prepared by simultaneous UV-curing and sol-gel process. J Polym Res 27, 88 (2020). https://doi.org/10.1007/s10965-020-02057-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02057-w

Keywords

Navigation