Skip to main content

Advertisement

Log in

Synthesis, characterization and applications of copolymer of β – cyclodextrin: a review

  • REVIEW PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Herein, this review the synthesis of different types of copolymer of β-cyclodextrin (β-CD) by different functional monomers and cross-linkers is discussed. β-CD shows good inclusion property, surface area, porous structure and unique host-guest properties. CDs, the macrocyclic compounds are renowned for their inclusion ability. Several chemical and polymerized derivatives of parent CDs are synthesized to improve the physicochemical/biopharmaceutical properties of drug and inclusion capacity of CD. The future panorama of polymerized CDs is quite bright as they can serve as useful multifunctional tools for pharmaceutical scientists to develop and optimize drug delivery through various routes and in fabrication of biosensors. For drug delivery, the efficacy of monomer is made suitable and the well-known inclusion ability of β-CD is retrospected. The synthesized copolymer of β-CD is characterized via several microscopic and spectroscopic techniques such as synchrotron radiation based PXRD, TGA (thermogravimetric analysis), DSC and FTIR. The aim of this review paper is to study different methods of synthesis of copolymers of β-CD by different functional monomers and cross-linkers. The review suggests methods and conditions used for the optimized synthesis of copolymers of β-CD. Further, the application of β-CD in the field of tissue engineering, packing material, drug delivery, cosmetics, personal care and toiletry, waste management, catalysis adhesive and coating industry have also been discussed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40

Similar content being viewed by others

Abbreviations

ATR-IR:

Attenuated total reflection infrared

AzoMA:

6-(4-Phenylazo phenoxy) hexylmethacrylate

ATRP:

Atom transfer radical polymerization

AM:

Acrylamide

AA:

Acrylic acid

AgNPs:

Silver nanoparticles

AIBN:

Azo iso butyro nitrile

A-β-CD:

Allyl-β-CD

APS:

Ammonium persulfate

ARGET:

Atom transfer radical polymerization

β-CD:

β-cyclodextrin

β-CD-PLGA:

β-CD –Poly (Lactide-co-Glycolide)

β-CD–g-PAN:

β-CD -grafted- Polyacrylonitrile

β-CD-MAH:

β-CD -Maleic anhydride

β-CD-PEI:

Polyethyleneimine-modified β-CD

β-CD:

AA Acrylic acid (AA) esterified β-CD

β-CD-SA:

β-CD– Sialic acid

β-CD – HEMA:

β-CD- hydroxyethyl methacrylate

β-PEI:

Polyethyleneimine-modified β-CD

CGTase:

Cyclodextrin glucotransferase

CS-g-HP-β-CD:

Chitosan grafted hydroxy propyl-β-CD

CD-NIPAAM β-CD:

N-isopropylacrylamide

CD-NMA:

Acrylamidomethylated β-CD

CDI1:

1-Carbonyldiimidzole

CDM-AM:

cyclodextrinmaleate -acrylamide

CTA:

Chain transfer agents

DLLAD:

L-lactide.

DPPE:

Dipalmytoylphosphatidylethanolamine.

DNFB:

2, 4 dinitro fluorobenzene

DMAEMA:

2- (Dimethyl amino) ethyl methacrylate

DSC:

Differential scanning Calorimetry

DOC:

Dissolved organic corbon

DPC:

Diphenyl carbonate

DEA:

2-(diethylamino)

DMC:

Dimethyl carbonate

DMF:

Dimethyl formamide

DCC N,N′:

Dicyclohexylcarbodiimide

Ep-β-CD:

Epichlorohydrin -β- CD

EGDMA:

Ethylene glycol dimethacrylate

ε-CL:

ε-caprolactone

EDA:

Ethylene diamine

EDC 3:

ethylcarbodiimide hydrochloride

FT-IR:

Fourier transform infrared spectroscopy

GA:

Glycolic acid

GLU:

Glutamic acid

GC:

Gas Chromatography

GlcN:

N-glycolyl

GPC:

Gel permeation chromatography

GECD:

Mono-methacrylate substituted cyclodextrin

GMA:

Glycidyl methacrylate

HP-β-CD:

Hydroxypropyl-β-CD

HEMA:

2-hydroxylethyl methacrylate

HDI:

Hexamethylene diisocyanate

HMDI:

Hexamethylene diisocyanates

HMTETA1:

1,4,7,10,10-hexamethyltriethylenetetramine

HPCS:

Hydroxypropyl chitosan

HPL CHigh:

performance liquid chromatography

HAD:

Hexamethylenediamine

IEC:

Ion exchange chromatography

LA:

Lactic acid

MIT:

Molecular imprinting technique

MEO2MA:

2(2-methoxyethoxy)ethyl methacrylate

MAA:

Methyl methacrylate

NMR:

Nuclear magnetic resonance

NIPAAM:

N-isopropylacrylamide

NMAN:

Methylolacrylamide

NHS:

N-hydroxysuccinimide

NVP:

N-vinyl-2- pyrrolidone

Ppm:

Parts per million

PXRD:

Powder X-ray diffraction

PAN:

Polyacrylonitrile

PAA:

Poly (acrylic acid)

PNIPA:

Poly (N-isopropylacrylamide)

PEG-HDI:

Polyethylene glycol- hexamethylene diisocyanate

PAA-b-CD:

Poly (acrylic acid)-β-CD

PEG-b-PCD:

Polyethylene glycol –β-CD

PVP-β-CD:

Polyvinyl pyrrolidine–β–CD

PMDA:

Pyromellitic anhydride

PMDETA:

Pentamethyldiethylenetriamine

PEG-β-CD:

Poly(ethylene glycol)- β-CD

PDMAEMA:

[2-(dimethylamino)ethyl methacrylate]

PS:

Polystyrene

PU:

Poly urethane

PVA:

Poly(vinyl alcohol)

PMPI:

p-maleimidophenyl isocyanate

RCD–g-PAN:

Reactive – CCD - grafted- Polyacrylonitrile

RP–HPLC:

Reversed phase-HPLC

ROP:

Ring opening polymerization

RAFT:

Reversible addition fragmentation chain transfer

SB:

Sodium sulphide

SDS PAGE:

Sodium dodecylsulphate polyacrylamide gel electrophoresis

TMAEMC N:

trimethyl methacrylate chloride

Ts- HP β-CD:

Tosylated - hydroxy propyl-β-cyclodextrin

Ts-Cl:

P-toluene sulphonyl chloride

TMAEMC N:

trimethyl methacrylate chloride

Ts- HP β-CD:

Tosylated - hydroxy propyl-β-cyclodextrin

Ts-Cl P:

toluene sulphonyl chloride

TEMED N, N, N, N:

tetramethylenediamine

TDI:

Toluene diisocyanate

TNBSA 2, 4, 6:

trinitrobenzene sulfonic acid

THF:

Tetrahydrofuran

2D NMR:

Two-dimensional nuclear magnetic resonance

TROSY NMR:

Transverse relaxation optimized

TEM:

Transmission electron microscopy.

TEA:

Triethylamine

VBDMH:

Vinylbenzyl-5, 5-dimethylhydantoin

UV:

Ultraviolet Spectroscopy

References

  1. Sugiura I, Komiyama M, Toshima HH (1989) Immobilized β-CDs Preparation with Various Crosslinking Reagents and the Guest Binding Properties. Bull Chem Soc Jpn 62(5):1643–1165. https://doi.org/10.1246/bcsj.62.1643

    Article  CAS  Google Scholar 

  2. Tegge G, Szejtli J (1982) CDs and their inclusion complexes (CD und ihre Einschlußkomplexe) Verlag der Ungarischen Akademie der Wissenschaften Akadémiai Kiadó, Budapest. 296 pages, with numerous tables and formulas, cloth DM 67,50. Budapest 34(11): 395-395. https://doi.org/10.1002/star.19820341113

  3. Bhaskara RU, Tourrette A, Jocic D, Warmoeskerken MMCG (1998) Attachment of β-Cds on Cotton and Influence of β-CD on Ester Formation with BTCA on Cotton. AATCC J Res 29(39):1743–1754. https://doi.org/10.14504/ajr.1.3.4

    Article  CAS  Google Scholar 

  4. Jimmy YC, Jiang ZT, Liu HY, Jiaguo Y, Zhanga L (2003) β-CD epichlorohydrin copolymer as a solid-phase extraction adsorbent for aromatic compounds in water samples. Anal Chim Acta 477(1):93–101. https://doi.org/10.1016/S0003-2670(02)01411-3

    Article  Google Scholar 

  5. Mahamadi C, Madocha B, Grégorio (2005) Recents developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30(1):38–70. https://doi.org/10.1016/j.progpolymsci.2004.11.002

    Article  CAS  Google Scholar 

  6. Jonathan W, Steed, Jerry L. Atwood (2009) Supramolecular chemistry, 2nd Edition. West Sussex, Wiley ISBN: 978–0–470-51234-0:970. https://www.wiley.com/en-us/Supramolecular+Chemistry%2C+2nd+Edition-p-9780470512340

  7. Sergey KV, Loftsson (2013). CDs Int J Pharm 453(1):167–180. https://doi.org/10.1016/j.ijpharm.2012.06.055

    Article  CAS  Google Scholar 

  8. Markus J, Kettel, Hildebrandt H, Schaefer K, Groll J (2012) Tenside-free preparation of nanogels with high functional β-CD content. Acs Nano 6(9):8087–8093. https://doi.org/10.1021/nn302694q

    Article  CAS  Google Scholar 

  9. Gil ES, Linfeng W, Lichong X, Lowe TL (2012) β-CD-poly (β-amino ester) nanoparticles for sustained drug delivery across the blood-brain barrier. Biomac 13(11):3533–3541. https://doi.org/10.1021/bm3008633

    Article  CAS  Google Scholar 

  10. Zhang D, Pan X, Wang S, Zhai Y, Guan J, Qiang F, Hao X, Qi W, Wang Y, Lian H, Liu X, Wang Y, Sun Y, He, Sun J (2015) Multifunctional poly(methyl vinyl ether-co-maleic anhydride)-graft-hydroxypropyl-β-CD amphiphilic copolymer as an oral high-performance delivery carrier of tacrolimus. Molecular Pharma 12(7):2337–2351. https://doi.org/10.1021/acs.molpharmaceut.5b00010

    Article  CAS  Google Scholar 

  11. Chen P, Liang HW, Lv XH, Zhu HZ, Yao HB, Yu SH (2011) Carbonaceous nanofiber membrane functionalized by β-CDs for molecular filtration. Acs Nano 5(7):5928–5935. https://doi.org/10.1021/nn201719g

    Article  CAS  PubMed  Google Scholar 

  12. Aoife M, Mahony O, Bruno MD, Godinho C, Ogier J, Devocelle M, Darcy R, Darcy, Cryan JF, Caitriona M, Driscoll O (2012) Click-modified CDs as nonviral vectors for neuronal siRNA delivery. Acs Chem Neurosci 3(10):744–752. https://doi.org/10.1021/cn3000372s

    Article  Google Scholar 

  13. Wang H, Liu K, Chen KJ, Lu Y, Wang S, Lin WY, Guo F, Kamei KI, Chen YC, Ohashi M, Wang M, Garcia MA, Zhao XZ, Clifton K, Shen, Tseng HR (2010) A rapid pathway toward a superb gene delivery system: programming structural and functional diversity into a supramolecular nanoparticle library. Acs Nano 4(10):6235–6243. https://doi.org/10.1021/nn101908e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singh P, Ren X, He Y, Li W, Wang C, Li H, Singh V, Zhang J (2017) Fabrication of β-CD and sialic acid copolymer by single pot reaction to site specific drug delivery. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.11.011

  15. Szente L, Fenyvesi É (2018) CD-enabled polymer composites for packaging. Molecules 23(7):1556. https://doi.org/10.3390/molecules23071556

    Article  CAS  PubMed Central  Google Scholar 

  16. Lin Z, Pang X (2013) Amphiphilic multi-arm copolymers and nanom aterials derived there from. https://patents.google.com/patent/US8445577B2/en

  17. Reddy GR, Mahaveer S, Bhojani, McConville P, Moody J, Bradford A, Moffat HDE, Kim G, Eun Y, Koo L, Woolliscroft MJ, Sugai JV, Johnson TD, Philbert MA, Kopelman R, Rehemtulla A, Ross BD (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12(22):6677–6686. https://doi.org/10.1158/1078-0432.CCR-06-0946

    Article  CAS  PubMed  Google Scholar 

  18. Wickham TJ (2003) Ligand-directed targeting of genes to the site of disease. Nature Med 9:135–139. https://doi.org/10.1038/nm0103-135

    Article  CAS  PubMed  Google Scholar 

  19. Chang Y. C, Chu I. M (2008) Methoxy poly (ethylene glycol)-β-poly (Valero lactone) diblock polymeric micelles for enhanced encapsulation and protection of camptothecin. Eur Poly J 44(12): 3922–3930. https://doi.org/10.1016/j.eurpolymj.2008.09.021

  20. Szejtli J (1997) Utilization of CDs in industrial products and processes. J Mater Chem 7:575–587. https://doi.org/10.1039/A605235E

    Article  CAS  Google Scholar 

  21. Mortensen A, Aguilar F, Crebelli R, Domenico AD, Dusemund B, Frutos MJ, Galtier P, Gott D, Remy UG, Leblanc JC, Lindtner O, Moldeus P, Mosesso P, Massin DP, Oskarsson A, Stankovic I, Berendsen IW, Woutersen RA, Wright M, Younes M, Boon P, Chrysafidis D, Gurtler R, Tobback P, Arcella D, Rincon AM, Lambr C (2016) Re-evaluation of β-CD (E 459) as a food additive. EFSA Journal 14(12):4628. https://doi.org/10.2903/j.efsa.2016.4628

    Article  CAS  Google Scholar 

  22. Allegre M, Deratani A (1994) Cyclodextrin uses from concept to industrial reality. Agro food industry hi-tech 5:9–17 [Google scholar]

    CAS  Google Scholar 

  23. Kohata S, Jyodoi K, Ohyoshi A (1993) Thermal decomposition of CDs (α-β-γ-, and modified β-CD) and of metal-(β-CD) complexes in the solid phase. Thermochem. Acta 217:187–198. https://doi.org/10.1016/0040-6031(93)85107-K

    Article  CAS  Google Scholar 

  24. Valle EMMD (2004) CDs and their uses: a review. Process Biochem 39(9):1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9

    Article  CAS  Google Scholar 

  25. Zou C, Zhao P, Ge J, Lei, Luo P (2012) β-CD modified anionic and cationic acrylamide polymers for enhancing oil recovery. Carbohydr Polym 87(1):607–613. https://doi.org/10.1016/j.carbpol.2011.08.031

    Article  CAS  Google Scholar 

  26. Manivannan S, Ramaraj R (2012) Synthesis of CD-silicate sol–gel composite embedded gold nanoparticles and its electrocatalytic application. Chem Eng J 210:195–202. https://doi.org/10.1016/j.cej.2012.08.085

    Article  CAS  Google Scholar 

  27. Chalasania R, Vasudevan S (2012) CD functionalized magnetic iron oxide nanocrystals: a host-carrier for magnetic separation of non-polar molecules and arsenic from aqueous media. J Mater Chem 30(22):14925–14931. https://doi.org/10.1039/C2JM3236

    Article  Google Scholar 

  28. Mehta R (2007) Topical and transdermal drug delivery: what a pharmacist need to know. British Pharmacopoeia 2:756

  29. Uekama K, Hirayama F, Irie T (1998) CD drug carrier systems. Chem Rev 98(5):2045–2076. https://doi.org/10.1021/cr970025p

    Article  CAS  PubMed  Google Scholar 

  30. Girek T (2014) CD polymers cross-linking by dicarboxylic acid anhydrides – structure and application. Girek T, Faculty of Math and Natural Sci, Jan Dlugosz University in Czestochowa summary of scientific accomplishments in English. Czestochowa,

  31. Schmid G, President Wacker Biochem Corp. 330 1 Sutton Road Adrian, Michigan 49221–9397 5 17–264-8795 (fax) 5 17–264-8793

  32. Re-evaluation of β-cyclodextrin-(E459) as a food additive. https://doi.org/10.2903/j.efsa.2016.4628

  33. EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain) (2010) Scientific opinion on lead in food. EFSA J 8(4):151. https://doi.org/10.2903/j.efsa.2010.1570

    Article  CAS  Google Scholar 

  34. Villiers A (1891) Sur la fermentation de la fécule par l’action du ferment butyrique. C R Acad Sci 112:536–538

    Google Scholar 

  35. Loftsson T, Brewster ME, Masson M (2004) Role of CDs in improving oral drug delivery. Am J. Drug Deliv 2(4):261–275. https://doi.org/10.2165/00137696-200402040-00006

    Article  CAS  Google Scholar 

  36. Duan M, Zhao N, Ossurardottir IB, Thorsteinsson T, Loftsson T (2005) CD solubilization of the antibacterial agents triclosan and triclocarban: formation of aggregates and higher-order complexes. Int J Pharm 22(9):213–222 http://www.ijprbs.com/issuedocs/2013/4/IJPRBS%20320.pdf

    Article  Google Scholar 

  37. Lakkala M, Lallimo J, Hakkarainen K (2005) Teachers’ pedagogical designs for technology-supported collective inquiry: a national case study. Computers &Edu 45(3):337–356. https://doi.org/10.1016/j.compedu.2005.04.010

    Article  Google Scholar 

  38. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1753

    Article  CAS  PubMed  Google Scholar 

  39. Connors KA (1997) The stability of cyclodextrin complexes in solution. Chem Rev 97:1325–1357

    Article  CAS  PubMed  Google Scholar 

  40. Concheiro A, Lorenzo CA (2013) Chemically cross-linked and grafted CD hydrogels: from nanostructures to drug-eluting medical devices. Adv Drug Deliver Rev 65:1188. https://doi.org/10.1016/j.addr.2013.04.015 Epub 2013 Apr 28

    Article  CAS  Google Scholar 

  41. Arima H, Motoyama K, Higashi T (2013) Sugar-appended polyamidoamine dendrimer conjugates with CDs as cell-specific non-viral vectors. Adv Drug Deliver Rev 65:1204. https://doi.org/10.1016/j.addr.2013.04.001

    Article  CAS  Google Scholar 

  42. Davaran S, Rezaei A, Alimohammadi S, Khandaghi AA, Koshki KN, Nasrabadi HT, Akbarzadeh A (2014) Synthesis and physicochemical characterization of biodegradable star-shaped Poly Lactide-co-Glycolide-β-CD copolymer nanoparticles containing albumin. Adv Nano 3:14–22. https://doi.org/10.4236/anp.2014.31003

    Article  CAS  Google Scholar 

  43. Kenneth A, Connors (1997) The Stability of Cyclodextrin Complexes in Solution. Chem Rev 97(5):1325–1358. https://doi.org/10.1021/cr960371r

    Article  Google Scholar 

  44. Kumar A. R, Ashok K, Brahmaiah B, Nama S, Baburao C (2013) The CDs: A Review 2(2): 291–304. https://www.researchgate.net/publication/255763196_The_CDs_A_review

  45. Fernandes CM, Veiga FJB (2002) Effect of the hydrophobic nature of Triacetyl-β-cyclodextrin on the Complexation with Nicardipine hydrochloride: physicochemical and dissolution properties of the kneaded and spray-dried complexes. Chem Pharm Bull 50(12):1597–1602. https://doi.org/10.1248/cpb.50.1597

    Article  CAS  PubMed  Google Scholar 

  46. Mehramizi A, Monfared A. E, Pourfarzib M, Bayati K. H, Dorkoosh F. A, Rafiee T (2007) Influence of β-cyclodextrin complexation on lovastatin release from osmotic pump tablets (OPT). DARU. 15(2):71–78. 7

  47. Doijad RC, Kanakal MM, Manvi (2007) Studies on Piroxicam-beta-Cyclodextrin inclusion complexes. Indian Pharm VI:94–98

  48. Vozone CM, Marques HMC (2003) Complexation of budesonide in Cyclodextrins and particle aerodynamic characterization of the complex solid form for dry powder inhalation. J Incl Phenom Macroc Chem 44:111–115

    Article  Google Scholar 

  49. Tsinontides SC, Rajnaik P, Pham D, Hunke WA, Placek J, Reynolds SD (2004) Freeze drying-principles and practice for Sucessful scale up to manufacturing. Int J Pharm 280(1):1–16. https://doi.org/10.1016/j.ijpharm.2004.04.018

  50. Pandya SJ, Mansuri JS, Patel P (2008) Compatible polymer used as complexes in various drug delivery systems: β-CD. Pharmainfo Net 6(2):35–42

    Google Scholar 

  51. Hebeish A, Higazy A, Hady MA, Sharaf S (2016) Novel Route for Antibacterial Finishing of Cotton Fabric Based on Ag Loaded CD –PAN Copolymers. Egypt J Chem 59(5):887910 http://ejchem.journals.ekb.eg/article_1553_6d63bf2eaaf937013d07fd65aa44d6b4.pdf

    Google Scholar 

  52. Jiang X, Qi Y, Wang S, Xi T (2010) New amphoteric flocculant containing β-CD, synthesis, characterization and decolorization properties. J. Hazard. Mater 173(1–3):298–304. https://doi.org/10.1016/j.jhazmat.2009.08.083

    Article  CAS  PubMed  Google Scholar 

  53. Li J, Loh XJ (2008) CD-based supramolecular architectures: synthesis, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev 60(9):1000–1017. https://doi.org/10.1016/j.addr.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  54. Miao Q, Li S, Han S, Wang Z, Wu Y, Nie G (2012) Construction of hydroxypropyl-b-cyclodextrin copolymer nanoparticles and targeting delivery of paclitaxel. J Nanopart Res 14:1043. https://doi.org/10.1007/s11051-012-1043-x

    Article  CAS  Google Scholar 

  55. Zohrehvand S, Evans CH (2005) 2-Naphthol-containing β-CD–epichlorohydrin copolymers: synthesis, characterization and fluorescence studies. Polym Int 54:744–753. https://doi.org/10.1002/pi.1747

    Article  CAS  Google Scholar 

  56. Zou C, Zhao P, Hu X, Yan X, Zhang Y, Wang X, Song R, Luo P (2013) β-Cyclodextrin-functionalized Hydrophobically associating acrylamide copolymer for enhanced oil recovery. Energy fuels 27:2827–2834. https://doi.org/10.1021/ef302152t

    Article  CAS  Google Scholar 

  57. Lukasiewicz M, Marciniak M Synthesis and properties of CD-malic acid copolymers. https://www.researchgate.net/publication/266507155

  58. Li R, Dou J, Jing LJ, Xie Z, Liang J, Ren X (2014) Preparation and antimicrobial activity of β-CD derivative copolymers/cellulose acetate nanofibers. Chem Eng J. 248:264–272. https://doi.org/10.1016/j.cej.2014.03.042

    Article  CAS  Google Scholar 

  59. Tian X, Ren E, Wang J, Zou J, Tao Y, Wang S, Jiang X (2012) Synthesis and flocculation property in dye solutions of β-CD–acrylic acid–[2-(Acryloyloxy)ethyl] trimethyl ammonium chloride copolymer. Carbohydr Polymers 87(3):1956–1962. https://doi.org/10.1016/j.carbpol.2011.10.003

    Article  CAS  Google Scholar 

  60. Singh P, RenXiaohong, HeYaping, Li W, Caifen W, Li H, Singh V, Zhang J (2017) Fabrication of b-cyclodextrin and sialic acid copolymer by single pot reaction to site specifific drug delivery. Arab J Chem. https://doi.org/10.1016/j.arabjc.2017.11.011

  61. Silambarasi T, Latha S, Thambidurai M, Selvamani P (2012) Formulation and evalaution of curcumin loaded magnetic nanoparticles for cancer therapy. Silambarasi et al IJPSR 3(5): 1393-1400.Available online on www.ijpsr.com

  62. Belgamwar A, Khan S, Rathi L (2017) Synthesis of chitosan-graft- HPβCD copolymer by novel one pot technique and its application for solubility enhancement of Efavirenz. J Young Pharm 9(2):172–176

    Article  CAS  Google Scholar 

  63. Qu Q, Tucker E, Christian S. D (2002) Sulfoalkyl ether β-CD derivatives: synthesis and characterizations. J Incl Phenom Macro (3–4): 213–222.https://doi.org/10.1023/a:1021255314835

  64. Liu YY, Fan XD, Gao L (2003) Synthesis and characterization of b-Cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide. Macromol Bio Sci 3:715–719. https://doi.org/10.1002/mabi.200300052

    Article  CAS  Google Scholar 

  65. Janus L, Crini G, El-Rezzi V, Morcellet M, Cambiaghi A, Torri G, Naggi A (1999) Carmen Vecch New sorbents containing beta-cyclodextrin. Synthesis,characterization, and sorption properties. Reactive & Functional Polymers 42:173–180

    Article  CAS  Google Scholar 

  66. Haddleton KOBWDM (2001) Synthesis of Well-Defined CD-Core Star Polymers. J Polm Sci Part A Polym Chem 39(13):2206–2214. https://doi.org/10.1002/pola.1197

    Article  Google Scholar 

  67. Guo Y, Li M, Li X, Shang Y, Liu H (2017) Stimuli-responsive and micellar behaviors of star-shaped poly[2-(dimethylamino)ethyl methacrylate]-b-poly[2-(2-methoxyethoxy)ethyl methacrylate] with a β-cyclodextrin core. Reactive and Functional Polymers 116:77–86. https://doi.org/10.1016/j.reactfunctpolym.2017.04.013

    Article  CAS  Google Scholar 

  68. Zhang JT, Huang SW, Zhuo RX (2004) Preparation and characterization of novel temperature sensitive Poly (N-isopropylacrylamide-co-acryloyl beta-cyclodextrin) hydrogels with fast shrinking kinetics. Macromol Chem Phys:107–113. https://doi.org/10.1002/macp.200350080

  69. Du X, Song N, Yang YW, Wu G, Ma, Gao H (2014) Reverse micelles based on β-cyclodextrin-incorporated amphiphilic polyurethane copolymers for protein delivery. Polym Chem 5(18):5300–5309. https://doi.org/10.1039/C4PY00278D

    Article  CAS  Google Scholar 

  70. Sreenivasan K (1996) Synthesis and characterization of poly (viny1 alcohol)-P-cyclodextrin copolymer. Die Angewandte Makromolekulare Chemie 235:15–20

    Article  CAS  Google Scholar 

  71. Chiari M, Cretich M, Crini G, Janus L, Morcellet M (2000) Allylamine–β-CD copolymer a novel chiral selector for capillary electrophoresis. J Chromatogr A 894(1–2):95–103. https://doi.org/10.1016/S0021-9673(00)00740-8

    Article  CAS  PubMed  Google Scholar 

  72. Çirpanli Y, Bilensoy E, Doğan AL, Çaliş S (2009) Comparative evaluation of polymeric and amphiphilic CD nanoparticles for effective camptothecin delivery. Eur J pharm Biophar 73(1):82–89. https://doi.org/10.1016/j.ejpb.2009.04.013

    Article  CAS  Google Scholar 

  73. Du F, Meng H, Xu K, Luo P, Yu L, Lu W, Huang J, Liu S, Yu J (2014) CPT loaded nanoparticles based on beta-cyclodextrin-grafted poly(ethylene glycol) / poly(L-glutamic acid) diblock copolymer and their inclusion complexes with CPT. Colloids Surf B: Biointerfaces 113:230–236. https://doi.org/10.1016/j.colsurfb.2013.09.015

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J, Peter X (2009) Polymeric core-shell assemblies mediated by host-guest interactions: versatile nanocarriers for drug delivery. Angew Chem Int Ed 48(5):964–968. https://doi.org/10.1002/anie.200804135

    Article  CAS  Google Scholar 

  75. Chiari M, Desperati V, Cretich M, Crini G, Janus L, Morcellet M (1999) Vinyl pyrrolidine-beta-cyclodextrin copolymer: a novel chiral selector for capillary electrophoresis. Electrophoresis 20(13):2614–2618. https://doi.org/10.1002/(SICI)1522-2683(19990901)20:13<2614 AID-ELPS2614>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  76. Sun ZY, Shen MX, Cao GP, Deng J, Liu Y, Liu T, Zhao L, Yuan WK (2010) Preparation of bimodal porous copolymer containing b-Cyclodextrin and its inclusion adsorption behavior. J App Polym Sci 118:2176–2185. https://doi.org/10.1002/app.32515

    Article  CAS  Google Scholar 

  77. Pezzoli D, Olimpieri F, Malloggi C, Bertini S, Volonterio A (2012) Gabriele Candiani Chitosan-Graft-Branched Polyethylenimine Copolymers: Influence of Degree of Grafting on Transfection Behavior. PLoS ONE 7(4):e34711. https://doi.org/10.1371/journal.pone.0034711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Amajjahe S, Choi S, Munteanu M, Ritter H (2008) Pseudo polyanions based on Poly (NIPAAM-co-β-CD methacrylate) and ionic liquids. Angew Chem Int Ed4718:3435–3437. https://doi.org/10.1002/anie.200704995

    Article  CAS  Google Scholar 

  79. Herrmann E (1996) Rewet improvement in diapers. An approach via sap properties, intern. Nonwoven congress, EDANA index 96, Geneva

  80. Jin Q, Liu G, Liu X, Ji J (2010) Photo-responsive supramolecular self-assembly and disassembly of an azobenzene-containing block copolymer. Soft Matter 6:5589–5595. https://doi.org/10.1039/c0sm00428f

    Article  CAS  Google Scholar 

  81. Rima J, Assaker K (2018) β-CD polyurethanes copolymerized with beetroot fibers (BioPolymer) to clean-up water polluted by organics and spilled-oil; Rima and Assaker. J Pet Environ Biotechnol 9:2. https://doi.org/10.4172/2157-7463.1000368

    Article  Google Scholar 

  82. Xu H, Sun S, Wei J, Yu Q, Shao Q, Lin C (2015) β-CD as pendant groups of a Polycarboxylate Superplasticizer for enhancing clay tolerance. Ind Eng Chem res 54(37):9081–9088. https://doi.org/10.1021/acs.iecr.5b02578

    Article  CAS  Google Scholar 

  83. Storsberg J, Glockner P, Eigner M, Schnoller U, Mutritter H, Voit B, Nuyken O (2001) Cyclodextrins in polymer synthesis: photocross-linkable films via free radical copolymerization of methylated b-cyclodextrin-complexed styrene with sodium 4-(acrylamido)-phenyldiazosulfonate in aqueous medium. Des Monomers Polym 4(1):9–17

    Article  CAS  Google Scholar 

  84. Ravi P, Divakar S (2000) β-CD mediated synthesis of Sterically controlled styrene-acrylonitrile copolymer. J Inc Phenom Macro 38(1–4):323–336. https://doi.org/10.1023/A:1008151406033

    Article  CAS  Google Scholar 

  85. de León AS, Muñoz-Bonilla A, Gallardo A, Fernandez-Mayoralas A, Bernard J, Rodríguez-Hernández J (2015) Straightforward functionalization of breath figures: simultaneous orthogonal host–guest and pH-responsive interfaces. J Colloid Interface Sci 457:272–280. https://doi.org/10.1016/j.jcis.2015.06.039

    Article  CAS  Google Scholar 

  86. Gao M, Wang J, Cong Q, Zhang B, He X, Ma X, Li G (2015) Functionalization of smart gels with Beta-Cyclodextrin and release characteristics to simulating drugs. Mater Sci Forum 815:675–683. https://doi.org/10.4028/www.scientific.net/MSF.815.675

    Article  Google Scholar 

  87. Yao N, Lin W, Zhang X, Huawei G, Zhang L (2016) Amphiphilic b-Cyclodextrin-based star-like block copolymer Unimolecular micelles for facile in situ preparation of gold nanoparticles. J Polym Sci A Polym Chem 54:186–196. https://doi.org/10.1002/pola.27889

    Article  CAS  Google Scholar 

  88. Gao Y, Li G, Zhou Z, Guo L, Liu X Supramolecular assembly of poly(β-cyclodextrin) block copolymer and benzimidazole-poly(ε-caprolactone) based on host-guest recognition for drug delivery. Colloids Surf B: Biointerfaces 160:364–371. https://doi.org/10.1016/j.colsurfb.2017.09.047

  89. Yu C, Li J, Liu J, Tang Y, Liu H, Jiang Y, Zhang H (2018) Synthesis and antimicrobial applications of the inclusion complexes of β-cyclodextrin copolymers with potassium sorbate. J Appl Polym Sci. https://doi.org/10.1002/APP.46885

  90. Li Y-F, Tang H-T, Zhou S-J (2018) The synthesis of water-soluble CDM-AM copolymer by irradiation and its solubilization effect on hydrophobic drugs. Des Monomers Polym 21(1):105–115. https://doi.org/10.1080/15685551.2018.1480681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xie J, Qin D, Han Y, Wang L (2019) Synthesis and characterization of a novel hydroxypropyl chitosan-graft-b-Cyclodextrin copolymer as potential drug carrier. J Carbohydr Chem 38(5–6):383–397. https://doi.org/10.1080/07328303.2019.1630837

    Article  CAS  Google Scholar 

  92. Lv J, Liang R, Xia Z, Li Y, Lv Z, Hou D, Yu L, Chen G, Liu Y, Yang F Synthesis and characterization of amphiphilic starshaped copolymers based on β-cyclodextrin for micelles drug delivery. Drug Dev Ind Pharm:1–12. https://doi.org/10.1080/03639045.2019.1593437

  93. Pawar S, Shende P, Trotta F (2019) Diversity of β-cyclodextrin-based nanosponges for transformation of actives. Int J Pharm 565:333–350. https://doi.org/10.1016/j.ijpharm.2019.05.015

    Article  CAS  PubMed  Google Scholar 

  94. Gursalkar T, Bajaj A, Jain D (2013) Cyclodextrin-based nanosponges for pharmaceutical use: a review. Acta pharm 63:335–338. https://doi.org/10.2478/acph-2013-0026

    Article  CAS  Google Scholar 

  95. Singh V, Liu B, Xu J, York P, Gref R, Zhang J, Li W, Guo T, Guo Z (2017) Ordered and disordered cyclodextrin nanosponges with diverse physicochemical properties. RSC Adv 7:23759. https://doi.org/10.1039/c7ra00584a

    Article  CAS  Google Scholar 

  96. Cavalli R, Trotta F, Tumiatti W (2006) Cyclodextrin-based nanosponges for drug delivery. J. Inc Phenom. Macrocycl. Chem 56:209–213. https://doi.org/10.1007/s10847-006-9085-2

    Article  CAS  Google Scholar 

  97. Du J, Zhou Y, Wang L, Wang Y (2016) Effect of PEGylated chitosan as multifunctional stabilizer for deacetyl mycoepoxydience nanosuspension design and stability evaluation. Carbohydr Polym 153:471–481. https://doi.org/10.1016/j.carbpol.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  98. Campos EVR, Oliveira JL, Fraceto LF (2016) Vancomycin loaded superparamagnetic MnFe2O4 nanoparticles coated with PEGylated chitosan to enhance antibacterial activity. Int J Pharm 501:326–330. https://doi.org/10.1016/j.ijpharm.2016.02.013

    Article  CAS  Google Scholar 

  99. Meléndez-Ortiz HI, Bucio E (2015) Synthesis, characterization, and uses of novel-architecture copolymers through gamma radiation technique. In: Tiwari A, Uzun L (eds) Advanced Functional Materials. Wiley, pp 433–462

  100. Ratner BD (1980) Characterization of graft polymers for biomedical applications. J biomed mater res 14:665–687. https://doi.org/10.1002/jbm.820140512

    Article  CAS  PubMed  Google Scholar 

  101. Jokerst JV, Lobovkina T, Richard NZ, Gambhir SS (2011) Nanoparticle PEGylation for imaging and therapy. Nanomed 6(4):715–728. https://doi.org/10.2217/nnm.11.19

    Article  CAS  Google Scholar 

  102. Zajac A, Hanuza J, Wandas M, Dymińska L (2015) Determination of NacetylationdegreeinchitosanusingRamanspectroscopy.Spectrochimica Acta part a. molecular and bio spec 134:114–120. https://doi.org/10.1016/j.saa.2014.06.071

    Article  CAS  Google Scholar 

  103. Poornima D, Gopinath P (2016) PEGylated graphene oxide-based nanocomposite-grafted chitosan/polyvinyl alcohol nanofiber as an advanced antibacterial wound dressing. RSC Adv 6(73):69103–69116. https://doi.org/10.1039/C6RA12192F

    Article  CAS  Google Scholar 

  104. Chan P, Kurisawa M, Chung JE, Yang YY (2007) Synthesis and characterization of chitosan-g-poly (ethylene glycol)-folate as a nonviral carrier for tumor-targeted gene delivery. Biomaterials 28(3):540–549. https://doi.org/10.1016/j.biomaterials.2006.08.046

    Article  CAS  PubMed  Google Scholar 

  105. Ha Ho T, Le TNT, Nguyen TA, Dang MC (2015) Poly (ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin. Adv Nat Sci Nanosci Nanotechno l(6):035004–035005. https://doi.org/10.1088/2043-6262/6/3/035004

    Article  CAS  Google Scholar 

  106. Liu G, Li K, Luo Q, Wang H, Zhang Z (2017) PEGylated chitosan protected silver nanoparticles as water-borne coating for leather with antibacterial property. J Colloid Intf Sci 490:642–651. https://doi.org/10.1016/j.jcis.2016.11.103

    Article  CAS  Google Scholar 

  107. Kolhe P, Kannan RM (2003) Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules 4(1):173–180. https://doi.org/10.1021/bm025689+

    Article  CAS  PubMed  Google Scholar 

  108. Papadimitriou SA, Achilias DS, Bikiaris DN (2012) Chitosan-g-PEG nanoparticles ionically cross-linked with poly (glutamic acid) and tripolyphosphate as protein delivery systems. Int J Pharm 430(1–2):318–327. https://doi.org/10.1016/j.ijpharm.2012.04.004

    Article  CAS  PubMed  Google Scholar 

  109. Najafabadi AH, Abdouss M, Faghihi S (2014) Synthesis and evaluation of PEG-O-chitosan nanoparticles for delivery of poor water-soluble drugs: ibuprofen. Mater Sci Eng 41:91–99. https://doi.org/10.1016/j.msec.2014.04.035

    Article  CAS  Google Scholar 

  110. Deygen IM, Kudryashova ЕV (2016) New versatile approach for analysis of PEG content in conjugates and complexes with biomacromolecules based on FTIR spectroscopy. Coll surface B Biointerfaces 141:36–43. https://doi.org/10.1016/j.colsurfb.2016.01.030Getrightsandcontent

    Article  CAS  Google Scholar 

  111. Sahariah P, Árnadóttir B, Másson (2016) Synthetic strategy for selective N-modified and O-modified PEGylated chitosan derivatives. Eur Polym J 81:53–63. https://doi.org/10.1016/j.eurpolymj.2016.05.020

    Article  CAS  Google Scholar 

  112. Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103(3):624. https://doi.org/10.1016/j.jconrel.2004.12.019

    Article  CAS  Google Scholar 

  113. Malhotra M, Lane C, Duchesneau CT, Saha S, Prakash S (2011) A novel method for synthesizing PEGylated chitosan nanoparticles: strategy, preparation, and in vitro analysis. Int J Nanomedicine 6:485–494. https://doi.org/10.2147/IJN.S17190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Malhotra M, Duchesneau CT, Saha S, Kahouli I, Prakash S (2013) Development and characterization of chitosan-PEG-TAT nanoparticles for the intracellular delivery of siRNA. Int J Nanomedicine 8:2041–2052. https://doi.org/10.2147/IJN.S43683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Carballal RN, Riguera, Megia EF (2013) Disclosing an NMR-invisible fraction in chitosan and PEGylated copolymers and its role on the determination of degrees of substitution. Mol Pharma 10(8):3225–3231. https://doi.org/10.1021/mp400267m

    Article  CAS  Google Scholar 

  116. Tsao CT, Hsiao MH, Zhang MY, Levengood SL, Zhang M (2015) Chitosan-PEG Hydrogel with Sol–Gel transition triggerable by multiple external stimuli. Macromol Rapid Commun 36(3):332–338. https://doi.org/10.1002/marc.201400586

    Article  CAS  PubMed  Google Scholar 

  117. Jing ZW, Ma ZW, Li C, Jia YY, Luo M, Ma XX, Zhou SY, Zhang BL (2017) Chitosan cross-linked with poly (ethylene glycol) dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery. Bioorg Med Chem Letters 27(4):1003–1006. https://doi.org/10.1016/j.bmcl.2016.12.072

    Article  CAS  Google Scholar 

  118. Weidner SM, Trimpin S (2010) Mass spectrometry of synthetic polymers. Anal Chem 82(12):4811–4829. https://doi.org/10.1021/ac101080n

    Article  CAS  PubMed  Google Scholar 

  119. Zu G, Tong X, Zhang T, Cao Y, Kuang Y, Zhang K, Zhang Y, Luo L, Liu M, PeiR (2017) PEGylated chitosan grafted with polyamidoamine-dendron as tumor-targeted magnetic resonance imaging contrast agent. New J Chem 41:7689–7696. https://doi.org/10.1039/C7NJ00860K

    Article  CAS  Google Scholar 

  120. Mao S, Shuai X, Unger F, Wittmar M, Xie X, Kissel T (2005) Synthesis, characterization and cytotoxicity of poly (ethylene glycol) graft-trimethyl chitosan block copolymers. Biomaterials 26(32):6343–6356. https://doi.org/10.1016/j.biomaterials.2005.03.036

    Article  CAS  PubMed  Google Scholar 

  121. Najafabadi AH, Abdouss M, Faghihi S (2014) Preparation and characterization of PEGylated chitosan nanocapsules as a carrier for pharmaceutical application. J Nanoparticle Res 16:2312. https://doi.org/10.1007/s11051-014-2312-7

    Article  CAS  Google Scholar 

  122. Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35(2):369–400. https://doi.org/10.1007/s13593-014-0274-x

    Article  Google Scholar 

  123. Pinhas MD, Poleg YD, Kashi Y, Peled HB (2014) Modified chitosan: a step toward improving the properties of antibacterial food packages. Food Packag Shelf Life 1(2):160–169. https://doi.org/10.1016/j.fpsl.2014.01.007

    Article  Google Scholar 

  124. Hauptstein S, Bonengel S, Griessinger J, Schnürch AB (2014) Synthesis and characterization of ph tolerant and mucoadhesive (Thiol– polyethylene glycol) chitosan graft polymer for drug delivery. Journal of Pharm Sci 103(2):594–601. https://doi.org/10.1002/jps.23832

    Article  CAS  Google Scholar 

  125. Valdez GO, Darabi A, Champagne P, Cunningham M (2015) PEGylation of chitosan via nitroxide chemistry in a queous media. Polym React Eng. https://doi.org/10.1002/mren.201500024

  126. Darabi A, García-Valdez O, Champagne P, Michael F, Cunningham (2016) PEGylation of chitosan via nitroxide-mediated polymerization in aqueous media. Macromol React Eng 10(1):82–89. https://doi.org/10.1002/mren.201500024

    Article  CAS  Google Scholar 

  127. Prego C, Torres D, Megia EF, Carballal RN, Quiñoá E, Alonso MJ (2006) Chitosan–PEG nanocapsules as new carriers for oral peptide delivery: effect of chitosan pegylation degree. J Control release 111(3):299–308. https://doi.org/10.1016/j.jconrel.2005.12.015

    Article  CAS  PubMed  Google Scholar 

  128. Lin WJ, Hsu WY (2015) Pegylation effect of chitosan based polyplex on DNA transfection. Carbohydr Polym 120:7–14. https://doi.org/10.1016/j.carbpol.2014.11.046

    Article  CAS  PubMed  Google Scholar 

  129. Luo Q, Gao H, Peng L, Liu G, Zhang Z (2016) Synthesis of PEGylated chitosan copolymers as efficiently antimicrobial coatings for leather. J Appl Polym Sci 133(22):43465. https://doi.org/10.1002/app.43465

    Article  CAS  Google Scholar 

  130. Casettari L, Vllasaliu D, Castagnino E, Stolnik S, Howdle SM, Illum L (2012) PEGylated chitosan derivatives: synthesis, characterizations and pharmaceutical applications. Prog Polym Sci 37(5):659–685. https://doi.org/10.1016/j.progpolymsci.2011.10.001

    Article  CAS  Google Scholar 

  131. Zhang L, Zhao ZL, Wei XH, Liu JH (2013) Preparation and in vitro and in vivo characterization of cyclosporin A-loaded, PEGylated chitosan-modified, lipid-based nanoparticles. Int J Nanomedicine 8(1):601–610. https://doi.org/10.2147/IJN.S39685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang X, Yao J, Zhang L, Fang J, Bian F (2014) Synthesis and characterization of PEG-conjugated quaternized chitosan and its application as a gene vector. Carbohydr Polym 103:566–572. https://doi.org/10.1016/j.carbpol.2013.12.072

    Article  CAS  PubMed  Google Scholar 

  133. Hara H, Hashimoto H (2002) Antimicrobial and insect – repellent CD films Jpn Kokai JP 2002029901

  134. Kawashima K (1980) Prevention of discoloration of food colorants. Jpn Kokai JP 8071464

  135. Ota T, Takeda F (1981) CDs as cheese additives. Jpn Kokai JP 8175060

  136. Szejtli J (1988) CD technology. The Netherlands, Kluwer Academic Publishers

  137. Prasad N, Strauss D, Reichart G (1999) Cyclodextrins inclusion for food, cosmetics and pharmaceuticals. European Patent 1(84):625

  138. Singh M, Sharma R, Banerjee UC (2002) Biotechnological applications of CDs. Biotechnol Adv 20(5–6):341–359. https://doi.org/10.1016/S0734-9750(02)00020-4

    Article  CAS  Google Scholar 

  139. del Valle EMM (2004) CDs and their uses: a review. Process Bio 39(9):1033–1046. https://doi.org/10.1016/S0032-9592(03)00258-9

    Article  CAS  Google Scholar 

  140. Hedges RA (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044

    Article  CAS  PubMed  Google Scholar 

  141. Shimpi S, Chauhan B, Shimpi P (2005) Solubility enhancement of dmperidone fast disintegrating tablet using hydroxypropyl-β-cyclodextrin by inclusion complexation technique. Acta Pharma 55(2):139–156

    CAS  Google Scholar 

  142. Challa R, Ahuja A, Ali J, Khar RK (2005) Cyclodextrins in drug delivery: an updated review. AAPS Pharm Sci Tech 06(2):329–357. https://doi.org/10.1208/pt060243

    Article  Google Scholar 

  143. Rasheed A (2008) CK.Ashok Kumar, Sravanthi VVNSS. Cyclodextrins as drug carrier molecule: a review. Sci Pharm 76

  144. Uekama K (2004) Design and evaluation of Cyclodextrin-based drug formulation. Chem Pharm Bull 52(8):900–915

    Article  CAS  PubMed  Google Scholar 

  145. Uekama K, Hirayama F, Irie T (1998) Cyclodextrin drug carrier systems. Chem Rev 98(5):2045–2076. https://doi.org/10.1021/cr970025p

    Article  CAS  PubMed  Google Scholar 

  146. Szejtli J (1988) Cyclodextrin technology. Dordrecht, Kluwer Academic Publishers, pp 1–78

  147. Smola M, Vandamme T (2007) Taste masking of unpleasant oral drugs. In: Mashkevich BO (ed) Drug delivery research advances. Nova Science Publishers, New York, pp 117–152

    Google Scholar 

  148. Forgács E, Cserháti T (2004). Anal Lett 37(9):1897–1908

    Article  Google Scholar 

  149. Miller LA, Carrier RL, Ahmed I (2007) Practical considerations in development of solid dosage forms that contain cyclodextrin. J Pharm Sci 96(7):1691–1707. https://doi.org/10.1002/jps.20831

    Article  CAS  PubMed  Google Scholar 

  150. Steed JW, Turner DR, Wallace KJ (2007) Core concepts in supramolecular chemistry. Wiley, West Sussex, pp 93–94

    Google Scholar 

  151. Grégorio C (2003) Studies on adsorption of dyes on β-CD polymer. Bioresource Tech 90(2):193–198. https://doi.org/10.1016/S0960-8524(03)00111-1

    Article  CAS  Google Scholar 

  152. Szejtli J (2003) CDs in the textile industry. StarchStärke 55(5):191–196. https://doi.org/10.1002/star.200390050

    Article  CAS  Google Scholar 

  153. Buschmann HJ, Denter U, Knittel D, Schollmeyer E (1998) The use of CDs in textile processes an overview. J text I 89(3):554–561. https://doi.org/10.1080/00405009808658641

    Article  CAS  Google Scholar 

  154. Grigoriu AM, Luca C, Grigoriu A (2008) CDs’ applications in the textile industry. Cellulose Chem Techno l42(1):103–112

    Google Scholar 

  155. Ibrahim NA, Zairy WRE, Eid BM (2010) Novel approach for improving disperse dyeing and UV-protective function of cotton-containing fabrics using MCT-[beta]-CD. Carbohyd Polym 79(4):839–846. https://doi.org/10.1016/j.carbpol.2009.10.008

    Article  CAS  Google Scholar 

  156. Raslan W, El-Aref A, Bendak A (2009) Modification of cellulose acetate fabric with CD to improve its dyeability. J. App Polym Sci 112(6):3192–3198. https://doi.org/10.1002/app.29630

    Article  CAS  Google Scholar 

  157. Yurdakul ACB (2006) Application of CD to the textile dyeing and washing processes. J App Polym Sci 100(1):208–218. https://doi.org/10.1002/app.22863

    Article  CAS  Google Scholar 

  158. Parlati S, Gobetto R, Barolo C, Arrais A, Buscaino R, Medana C, Savarino P (2007) Preparation and application of a CD-disperse/reactive dye complex. J Incl Phenom Macro 57(1):463–470. https://doi.org/10.1007/s10847-006-9235-6

    Article  CAS  Google Scholar 

  159. Kut D, Gonesoglu C, Orhan M (2007) An investigation into the possibility of using CD increase resistant finish. Fibres & Textiles in Eastern Europe 15(2):61. https://www.infona.pl/resource/bwmeta1.element.baztech-e5f5175c-c32a-4ec7-9c0e-9454ed1d46fa

    Google Scholar 

  160. Baboota S, Agarwal SP (2003) Meloxicam complexation with β -cyclodextrin: influence on antinflammatory and ulcerogenic activity. Pharmazie 58:73–74

    CAS  PubMed  Google Scholar 

  161. Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59(7):645–666. https://doi.org/10.1016/j.addr.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  162. Loftsson T, Másson MEBM (2004) Role of Cyclodextrins in improving Oral drug delivery. Am J Drug Deliv 2(4):261–275

    Article  CAS  Google Scholar 

  163. Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329(1–2):1–11. https://doi.org/10.1016/j.ijpharm.2006.10.044

    Article  CAS  PubMed  Google Scholar 

  164. Baboota S, Agarwal SP (2003) Inclusion complexes of meloxicam with b-cyclodextrins. Ind J Pharm Sci 64:408–411

    Google Scholar 

  165. Bayomi M, Abanumay K, Ai-Angary A (2002) Effect of inclusion complexation with cyclodextrins o-n photostability of nifedipine in solid state. Int J Pharm 243:107–117

    Article  CAS  PubMed  Google Scholar 

  166. Beraldo H, Sinisterra RD, Teixeira LR, Vieira RP, Doretto MC (2002) An effective anticonvulsant prepared following a host-guest strategy that uses hydroxypropyl-beta-cyclodextrin and benzaldehyde semicarbazone. Biochem Biophys Res Commun 296:241–246

    Article  CAS  PubMed  Google Scholar 

  167. Becirevic LM, Filipovic-Grcic J (2000) Effect of hydroxypropyl-beta-cyclodextrin o-n hydrocortisone dissolution from films intended for ocular drug delivery. Pharmazie 55:518–520

    Google Scholar 

  168. Bibby DC, Davies NM, Tucker IG (2000) Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int J Pharm 197:1–11

    Article  CAS  PubMed  Google Scholar 

  169. Brewster ME, Loftsson T (2002) The use of chemically modified cyclodextrins in the development of formulations for chemical delivery systems. Pharmazie 57:94–101

    CAS  PubMed  Google Scholar 

  170. Kang J, Kumar V, Yang D, Choudhary PR, Hohl RJ (2005) Cyclodextrin complexation: influence o-n the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent. Eur J Pharm Sci 15:163–170

    Article  Google Scholar 

  171. Lukášek J, Hauzerová Š, Havlíˇcková K, Strnadová K, Mašek K, Stuchlík M, Stibor I, Jencová V, Rezanka M (2019) Cyclodextrin-polypyrrole coatings of scaffolds for tissue engineering. Polymers 11:459. https://doi.org/10.3390/polym11030459

    Article  CAS  PubMed Central  Google Scholar 

  172. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomater 33(26):6020–6041

    Article  CAS  Google Scholar 

  173. Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, Barabaschi G, Demarchi D, Dokmeci MR, Yang Y, Khademhosseini A (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14(13):2202–2211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F (2013) Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 65(9):1172–1187

    Article  CAS  PubMed  Google Scholar 

  175. Park H, Choi B, Hu J, Lee M (2013) Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater 9(1):4779–4786

    Article  CAS  PubMed  Google Scholar 

  176. Gao S, Wang L (1998) Application of cyclodextrin in environmental science. Huanjing Kexue Jinzhan 6:80–86

  177. Wu C, Fan J (1998) Applications of cyclodextrin to water treatment. Shuichuli Jishu 24:67–70

    Google Scholar 

  178. Reid BJ, Semple KT, Jhones KC (1999) Soil test for determining bioavailability of pollutants. PCT Int Appl WO 99(54):727

    Google Scholar 

  179. Gursalkar T, Bajaj A, Jain D (2013) Cyclodextrin-based nanosponges for pharmaceutical use: a review. Acta Pharm 63:335–338. https://doi.org/10.2478/acph-2013-0026

  180. Swaminathan S, Cavalli R, Trotta F, Ferruti P, Ranucci E, Gerges I, Manfredi A, Marinotto D, Vavia PR (2010a) In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of β- cyclodextrin. J Incl Phenom Macro 68(1–2):183–191. https://doi.org/10.1007/s10847-010-9765-9

    Article  CAS  Google Scholar 

  181. Mamba BB, Krause RW, Malefetse TJ, Gericke G, Sithole SP (2008) Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation. Water 34(5):657–660

    CAS  Google Scholar 

  182. Deshmukh K, Shende P (2018) Toluene diisocyanate cross-linked β-cyclodextrin nanosponges as pH-sensitive carrier for naproxen. Mat Res Exp Exp 5(7):075008. https://doi.org/10.1088/2053-1591/aac93d

  183. Hirayama F, Uekama K (1999) CD-based controlled drug release system. Adv Drug Deliv Rev 36(1):125–141. https://doi.org/10.1016/S0169-409X(98)00058-1

    Article  CAS  PubMed  Google Scholar 

  184. Hashimoto H (2002) Present status of industrial application of CDs in Japan. J Incl Phenom 44(1):57–62. https://doi.org/10.1023/A:1023036406829

    Article  CAS  Google Scholar 

  185. Xia Y, Wan J (2008) Preparation and adsorption of novel cellulosic fibers modified by β-CD. Polym AdvTech 19(4):270–275

    CAS  Google Scholar 

  186. Atwood J (1990) Inclusion Phenomenon and Recognition. Plenum, New York

    Book  Google Scholar 

  187. Ye H, Tong W, Dsouza V (1992) Efficient catalysis of a redox reaction by an artificial enzyme, am. Chem Soc 114:5470–5472

    Article  CAS  Google Scholar 

  188. Leventis R, Silivius JR (2001) Use of cyclodextrins to monitor transbilayer movement and differential lipid affinities of cholesterol. J Biophys 81:2257–2267. https://doi.org/10.1016/S0006-3495(01)75873-0

    Article  CAS  Google Scholar 

  189. Hun S (1997) Direct enantiomeric separations by high performance liquid chromatography using cyclodextrins. Biomed Chromatogr 11:259–271. https://doi.org/10.1002/(SICI)1099-0801(199709)11:5<259::AID-BMC701>3.0.CO;2-U

    Article  Google Scholar 

  190. Schnederman E, Am S (2000) Cyclodextrins: a versatile tool in separation science. J Chromatogr B 745:83–102. https://doi.org/10.1016/s0378-4347(00)00057-8

    Article  Google Scholar 

  191. Lu X, Chen Y (2002) Chiral separation of amino acids derivatized with fluoresceine-5-isothiocyanate by capillary electrophoresis and laser-induced fluorescence detection using mixed selectors of β-cyclodextrin and sodium taurocholate. J Chromatogr A 955:133–140. https://doi.org/10.1016/S0021-9673(02)00186-3

    Article  CAS  PubMed  Google Scholar 

  192. Hedges RA (1998) Industrial applications of cyclodextrins. Chem Rev 98:2035–2044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge University Grant Commission (Sanction Letter No. 30-303/2016/BSR dated 28/09/2016) for the financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazia Tarannum.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarannum, N., Suhani & Kumar, D. Synthesis, characterization and applications of copolymer of β – cyclodextrin: a review. J Polym Res 27, 89 (2020). https://doi.org/10.1007/s10965-020-02058-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02058-9

Keywords

Navigation