Skip to main content
Log in

Lipophilic modification of T-ZnOw and optical properties of T-ZnOw/PVB composite films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In order to protect the articles in buildings from ultraviolet radiation and save air-conditioning energy, polyvinyl butyral laminated glass are employed and produced in large quantities. Several inorganic particles with blocking effect have been doped into PVB, such as TiO2, ZnO, and ATO. T-ZnOw is a widely used functional structural material with excellent absorption properties. Herein, T-ZnOw was lipophilic modified with silane coupling agent KH-570, and T-ZnOw/PVB composite films were prepared via subsequent solution blending. As per the FTIR spectrum, a characteristic peak of Si–O–Zn at 1165 cm−1 was observed, indicating that T-ZnOw was successfully modified by KH-570. T-ZnOw before and after modification was separately mixed with the St/H2O mixed solution. The modified T-ZnOw could be dispersed in styrene instead of water, displaying a certain lipophilicity. On the other hand, from a microscopic perspective, the SEM images suggest that filling the filler in the form of a suspension can disperse the modified T-ZnOw in PVB in an independent four-needle form, which contributes toward improvement of the agglomeration of T-ZnOw in the PVB matrix. The UV–Vis–NIR spectrum shows that the addition of T-ZnOw reduced the UV transmittance of T-ZnOw/PVB composite films from 50.84 to 25.77%, resulting in a decrease in near-infrared transmittance from 82.14 to 43.22%. The ultraviolet and near-infrared light barrier properties of composite films were more than twice that of the ordinary PVB films. Moreover, the modified T-ZnOw endowed composite films with stronger ultraviolet light and near-infrared light-blocking properties, or better visible light transmittance. And the falling ball impact test proved that there was no clear relationship between the thickness of the film and the adhesion. This work proposes a new solution and preparation method for the production of energy-saving glass. Therefore, it is expected that using composite films instead of traditional PVB films to make laminated glass can greatly contribute toward energy conservation and environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.S. Luo, J.P. Yang, X.J. Dai et al., Preparation and optical properties of novel transparent Al-doped-ZnO/epoxy nanocomposites. China Ceram. Ind. 113(21), 9406–9411 (2004)

    Google Scholar 

  2. Q.B. Ma, Z.Z. Ye, H.P. He et al., Influence of annealing temperature on the properties of transparent conductive and near-infrared reflective ZnO:Ga films. Scr. Mater. 58(1), 21–24 (2008)

    Article  ADS  Google Scholar 

  3. C.G. Granqvist, I. Hamberg, J.S.E.M. Svensson, Window coatings with selective radiative properties. Ind. Eng. Chem. Prod. Res. Dev. 24(1), 93–95 (1985)

    Article  Google Scholar 

  4. S. Schelm, G.B. Smith, P.D. Garrett et al., Tuning the surface-plasmon resonance in nanoparticles for glazing applications. J. Appl. Phys. 97(12), 353-43 (2005)

    Article  Google Scholar 

  5. J. Belis, J. Depauw, D. Callewaert et al., Failure mechanisms and residual capacity of annealed glass/SGP laminated beams at room temperature. Eng. Fail. Anal. 16(6), 1866–1875 (2009)

    Article  Google Scholar 

  6. I.M.D. Rosa, A. Dinescu, F. Sarasini et al., Effect of short carbon fibers and MWCNTs on microwave absorbing properties of polyester composites containing nickel-coated carbon fibers. Compos. Sci. Technol. 70(1), 102–109 (2010)

    Article  Google Scholar 

  7. Y. Feng, B. Qiu et al., Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. J. Magn. Magn. Mater. 318(1), 8–13 (2007)

    Article  ADS  Google Scholar 

  8. C.H. Peng, C.C. Hwang, J. Wan et al., Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane (TPU)-bonded NiZn-ferrites prepared by combustion synthesis method. Mater. Sci. Eng. B 117(1), 27–36 (2005)

    Article  Google Scholar 

  9. A.K. Dhaliwal, J.N. Hay, The characterization of polyvinyl butyral by thermal analysis. Thermochim. Acta 391(1–2), 245–255 (2002)

    Article  Google Scholar 

  10. M.A. El-Sherbiny, N.S.A. El-Rehim, Spectroscopic and dielectric behavior of pure and nickel-doped polyvinyl butyral films. Polym. Test. 20(4), 371–378 (2001)

    Article  Google Scholar 

  11. K. Nakane, T. Kurita, T. Ogihara et al., Properties of poly(vinyl butyral)/TiO2 nanocomposites formed by sol–gel process. Compos. Part B (Eng.) 35(3), 219–222 (2004)

    Article  Google Scholar 

  12. M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R Rep. 28(1–2), 1–63 (2000)

    Article  Google Scholar 

  13. A.C. Balazs, T. Emrick, T.P. Russell, Nanoparticle polymer composites: where two small worlds meet. Science 314(5802), 1107–1110 (2006)

    Article  ADS  Google Scholar 

  14. P. Wait Kumar, N. Khan, D. Kumar, Polyvinyl butryl (PVB), versatile template for designing nanocomposite/composite materials: a review. Green Chem. Technol. Lett. 2(4), 185–194 (2016)

    Article  Google Scholar 

  15. W. Wang, Y. Yuan, L. Zhang et al., Annealing effects on properties of LaB6/ATO thin films deposited by magnetron sputtering. Ceram. Int. 38(5), 4313–4318 (2012)

    Article  Google Scholar 

  16. F. Jiang, Y.K. Leong, M. Saunders et al., Uniform dispersion of lanthanum hexaboride nanoparticles in a silica thin film: synthesis and optical properties. ACS Appl. Mater. Interfaces 4(11), 5833–5838 (2012)

    Article  Google Scholar 

  17. K. Adachi, M. Miratsu, T. Asahi, Absorption and scattering of near-infrared light by dispersed lanthanum hexaboride nanoparticles for solar control filters. J. Mater. Res. 25(03), 510–521 (2010)

    Article  ADS  Google Scholar 

  18. S. Schelm, G.B. Smith, Dilute LaB6 nanoparticles in polymer as optimized clear solar control glazing. Appl. Phys. Lett. 82(24), 4346–4348 (2003)

    Article  ADS  Google Scholar 

  19. L. Feng, C. Cheng, B.D. Yao et al., Photoluminescence study of single ZnO nanostructures: size effect. Appl. Phys. Lett. 95(5), 323 (2009)

    Article  Google Scholar 

  20. L.C. Chao, S.H. Yang, Growth and Auger electron spectroscopy characterization of donut-shaped ZnO nanostructures. Appl. Surf. Sci. 253(17), 7162–7165 (2007)

    Article  ADS  Google Scholar 

  21. E.K. Shokr, M.M. Wakkad, H.A.A. El-Ghanny et al., Sb-doping effects on optical and electrical parameters of SnO2 films. J. Phys. Chem. Solids 61(1), 75–85 (2000)

    Article  ADS  Google Scholar 

  22. E. Elangovan, K. Ramamurthi, Studies on optical properties of polycrystalline SnO2:Sb thin films prepared using SnCl2 precursor. Cryst. Res. Technol. 38(9), 779–784 (2010)

    Article  Google Scholar 

  23. M.J. Alam, D.C. Cameron, Characterization of transparent conductive ITO thin films deposited on titanium dioxide film by a sol–gel process. Surf. Coat. Technol. 142(01), 776–780 (2001)

    Article  Google Scholar 

  24. N. Al-Dahoudi, M.A. Aegerter, Wet coating deposition of ITO coatings on plastic substrates. J. Sol-Gel Sci. Technol. 26(1–3), 693–697 (2003)

    Article  Google Scholar 

  25. H.R. Fallah, M. Ghasemi, A. Hassanzadeh et al., The effect of annealing on structural, electrical and optical properties of nanostructured ITO films prepared by e-beam evaporation. Mater. Res. Bull. 42(3), 487–496 (2007)

    Article  Google Scholar 

  26. D. Wu, J. Liu, Y. Wang, Enhancing indium tin oxide (ITO) thin film adhesiveness using the coupling agent silane. Appl. Surf. Sci. 256(9), 2934–2938 (2010)

    Article  ADS  Google Scholar 

  27. H. Liu, X. Zeng, X. Kong et al., A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surf. Sci. 258(22), 8564–8569 (2012)

    Article  ADS  Google Scholar 

  28. H. Tang, Y. Su, T. Hu et al., Synergetic effect of LaB6 and ITO nanoparticles on optical properties and thermal stability of poly (vinylbutyral) nanocomposite films. Appl. Phys. A 117(4), 2127–2132 (2014)

    Article  ADS  Google Scholar 

  29. Q.X. He, W.P. Tu, J.Q. Hu, Synthesis and characterization of bismuth-doped tin dioxide nanometer powders. J. Central South Univ. 13(5), 519–524 (2006)

    Article  Google Scholar 

  30. L. Cai, G. Jiang, C. Zhu et al., High quality Al-doped ZnO thin films deposited using targets prepared by chemical coprecipitation. Phys. Status Solidi (a) 206(7), 1461–1464 (2009)

    Article  ADS  Google Scholar 

  31. G. Hu, Y. Ma, B. Wang, Mechanical properties and morphology of nylon 11/tetrapod-shaped zinc oxide whisker composite. Mater. Sci. Eng. A 504(1–2), 8–12 (2009)

    Article  Google Scholar 

  32. S. Nie, X. Zhang, J. Luo et al., Synergistic effect of boron nitride and tetrapod-shaped zinc oxide whisker hybrid fillers on filler networks in thermal conductive HDPE composites. Polym. Compos. 38, 1902–1909 (2015)

    Article  Google Scholar 

  33. F.Y. Yuan, H.B. Zhang, X. Li et al., Synergistic effect of boron nitride flakes and tetrapod-shaped ZnO whiskers on the thermal conductivity of electrically insulating phenol formaldehyde composites. Compos. A Appl. Sci. Manuf. 53, 137–144 (2013)

    Article  Google Scholar 

  34. Z.W. Zhou, S. Hu, L.S. Chu, Studies on tetrapod-shaped ZnO whisker modified polymer composites. Mater. Sci. Forum 475, 1033–1036 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Jilin Scientific and Technological Development Program (No. 20180201075SF) and Jilin Province Development and Reform Commission (No. 2019C043-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangfeng Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Liu, C., Lu, C. et al. Lipophilic modification of T-ZnOw and optical properties of T-ZnOw/PVB composite films. Appl. Phys. A 126, 259 (2020). https://doi.org/10.1007/s00339-020-3436-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3436-5

Keywords

Navigation